Prova II

Cálculo I

 2° semestre de 2012

MA 111 – Turmas A,B

19 de Outubro de 2012

Nome:	
R.A.:	Turma:

Questão	1	2	3	4	5	Nota
Resultado						

Não desgrampear a prova. É proibido usar calculadora. Justifique todas as suas respostas.

1. Calcular as derivadas das seguintes funções

(a)
$$f(x) = (\cos x)^{4x}$$

(c)
$$P(t) = \operatorname{artanh}\left(\operatorname{sen}\frac{1}{3t+1}\right)$$
 (0.7)

(b)
$$F(y) = \frac{7y^3e^{2y}}{y^2 - 1}$$
 (0.6)

(d)
$$G(s) = \frac{s^2 \sinh s - 2s \cosh s}{s+1}$$
 (0.7)

2. Calcular os seguintes limites

(a)
$$\lim_{x \to 1^{-}} (1-x)^{\ln x}$$

(b)
$$\lim_{x \to 0^+} \left(\frac{1}{e^x - 1} - \frac{1}{x} \right)$$
 (0.7)

- 3. Esboçar o gráfico da função $f(x) = \frac{x^2 1}{x^2 + 3}$, discutindo (i) domínio, (ii) simetria, (iii) interceptos e sinal, (iv) monotonia e extremos, (v) concavidade e pontos de inflexão, (vi) assíntotas e (vii) imagem. (3.5)
- 4. Um fazendeiro precisa separar 8 de suas vacas em uma área retangular, de modo a conter uma área de $50~\rm{m^2}$ por vaca. Qual é o formato ótimo do cercado e a metragem mínima de cerca que ele precisa? (2.5)