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Rutishauser’s qd algorithm: early papers

• Rutishauser (1954a, ZAMP): Der
Quotienten–Differenzen–Algorithmus

• Rutishauser (1954b, ZAMP): Anwendungen des
Quotienten–Differenzen–Algorithmus

• Rutishauser (1954c, Arch.Math.): Ein infinitesimales Analogon
zum Quotienten–Differenzen–Algorithmus

• Rutishauser (1955a, ZAMP): Bestimmung der Eigenwerte und
Eigenvektoren einer Matrix mit Hilfe des
Quotienten–Differenzen–Algorithmus

• Rutihauser (1957a, Mitt. IAM, ETH): Der
Quotienten–Differenzen–Algorithmus

• Henrici (1958, NBS book): The Quotient-Difference Algorithm
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Eduard Stiefel’s suggestion (∼ 1953)

Stiefel’s suggestion to Rutishauser: Given A, x0, y0, use the
Schwarz constants (= moments = Markov parameters )

sk :≡ yT
0Akx0 (k = 0, 1, 2, . . . ) (1)

to find the eigenvalues of A.

Daniel Bernoulli (1732), J. König (1884):

sν+1

sν

−→ λ1 as ν −→ ∞ if |λ1| > |λ2| ≥ |λ2| ≥ . . . .

Note: It turned out that for the other eigenvalues, Stiefel’s
proposal was a bad idea, since the dependence of the EVals
from the moments is highly ill-conditioned (Gautschi (1968)).
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Moments and their generating function

Given: N × N matrix A and x0, y0 ∈ R
N , let

f (z) :≡
〈

y0, (zI − A)−1 x0

〉

=
〈

y0,
1
z (I − 1

z A)−1 x0
〉

(2)

f is a rational function of type (N − 1, N), so f (∞) = 0.

The poles of f are eigenvalues of A.

f can be expanded into a power series in z−1:

f (z) =
∞
∑

k=0

sk

zk+1 =
s0

z
+

s1

z2 +
s2

z3 + . . . . (3)

where
sk = yT

0Akx0

So, f is the generating function of the moments.
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Alternative formulations of the problem

Clearly, there are several equivalent problems:

• Find eigenvalues of A.

• Find poles of generating (rational) function f .

• Find zeros of the denominator polynomial of f (Bernoulli).

In theory, the problem had been solved before by

• Hadamard (1892) (his PhD thesis!),

• de Montessus de Ballore (1902/1905),

• Aitken (1926/1931).

But none of them had an efficient algorithm.

Rutishauser cites Hadamard and Aitken, but never
de Montessus de Ballore, who proved the convergence of Padé
approximants with fixed denominator degree.
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Hadamard’s theorem (1892)

Given the power series of f in z−1 of (3), let H(ν)
0 :≡ 1, and

define the Hankel determinants

H (ν)
k =

∣

∣

∣

∣

∣

∣

∣

∣

∣

sν sν+1 . . . sν+k−1

sν+1 sν+2 . . . sν+k
...

...
. . .

...
sν+k−1 sν+k . . . sν+2k−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

(k = 1, 2, . . . ;
ν = 0, 1, . . . )

THEOREM

[Hadamard (1892)] If |λk+1| < Λ < |λk |, then, as ν −→ ∞,

H (ν)
k = const · (λ1 · · ·λk )ν

[

1 + O

(

Λ

|λk |

)

ν
]

For a simpler proof see Henrici (1958) or Henrici (1974).
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Hadamard’s theorem (1892) (cont’d)

COROLLARY

If f has N simple poles, then

1 H (ν)
k 6= 0 (k = 1, . . . , N) for large enough ν,

and H (ν)
N+1 = 0 (∀ν).

2 If |λk | > |λk+1| then

H (ν+1)
k

H (ν)
k

−→ λ1λ2 · · ·λk as ν −→ ∞. (4)

3 If |λk−1| > |λk | > |λk+1| then

q (ν)
k :≡

H (ν+1)
k

H (ν)
k

·
H (ν)

k−1

H (ν+1)
k−1

−→ λk as ν −→ ∞. (5)
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Aitken’s scheme (1931) (cont’d)

Computing, for fixed ν, the Hankel determinants H (ν)
1 , . . . , H (ν)

N

(if nonzero) requires the LU decomposition of the matrix H (ν)
N .

Aitken (1926, 1931) used what is now called “Jacobi identity”
(“theorem of compound determinants”)

(

H (ν)
k

)2
= H (ν−1)

k H (ν+1)
k + H (ν−1)

k+1 H (ν+1)
k−1 . (6)

It had also been known to Hadamard, but Aitken used it to build
up — from the left or from the top — the table

1

1 H (0)
1

1 H (1)
1 H (0)

2

1 H (2)
1 H (1)

2 H (0)
3

1 H (3)
1 H (2)

2 H (1)
3 H (0)

4
...

...
...

...
...

. . .
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Rutishauser’s qd algorithm (QD-Algorithmus)

Rutishauser (1954a) knew Aitken’s work and refers to (4),

H (ν+1)
k

H (ν)
k

−→ λ1λ2 · · · λk as ν −→ ∞

as the key to computing non-dominant poles.

But instead of computing the H (ν)
k –table, he headed directly for

recurrences for

q (ν)
k :≡

H (ν+1)
k

H (ν)
k

·
H (ν)

k−1

H (ν+1)
k−1

and e (ν)
k :≡

H (ν)
k+1

H (ν)
k

·
H (ν+1)

k−1

H (ν+1)
k

(7)

In Rutishauser (1954a) he derives the formulas needed for
q (ν)

2 , and then states recursions for general k .
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Rutishauser’s qd algorithm (cont’d)

qd table (QD–Schema) :

0

0

0

0

0

...

q(0)
1

q(1)
1

q(2)
1

q(3)
1

q(4)
1

...

×

e(0)
1

e(1)
1

e(2)
1

e(3)
1

e(4)
1

...

×

+

q(0)
2

q(1)
2

q(2)
2

q(3)
2

...

+

e(0)
2

e(1)
2

e(2)
2

e(3)
2

...

. . .

. . .

. . .

e(0)
N−1

e(1)
N−1

e(2)
N−1

...

q(0)
N

q(1)
N

...

0

0

...

e(0)
1 · q(0)

2 = q(1)
1 · e(1)

1 q(1)
2 + e(1)

2 = e(2)
1 + q(2)

2
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Rutishauser’s qd algorithm (cont’d)

Rhombus rules (called so by Stiefel, 1955) of qd algorithm :

For building up the table columnwise from left to right:

e(ν)
k := e(ν+1)

k−1 + q(ν+1)
k − q(ν)

k

q(ν)
k+1 := q(ν+1)

k

e(ν+1)
k

e(ν)
k















(k = 1, 2, . . . ) (8)

For building up the table row-wise, from top to bottom:

q(ν+1)
k := q(ν)

k + e(ν)
k − e(ν+1)

k−1

e(ν+1)
k := e(ν)

k

q(ν+1)
k

q(ν)
k+1















(k = 1, 2, . . . ) (9)

Recursions (9) are the basis of the progressive qd algorithm
(the relevant version).
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Rutishauser’s qd algorithm (cont’d)

In Rutishauser (1954a) the correctness of the rhombus rules
follows later from the connections to continued fractions
(probably Stiefel’s argument).

Originally, Rutishauser derived them probably from Hadamard’s
“Jacobi identity”

(

H (ν)
k

)2
= H (ν−1)

k H (ν+1)
k + H (ν−1)

k+1 H (ν+1)
k−1 .

Henrici (1958), who was in contact with Rutishauser, pointed
out that one rhombus rules (+) can be derived by combining
two applications of this formula, the other (×) just by using the
definitions (9) of q(ν)

k and e(ν)
k .

The details have been worked out in Parlett (1996), a TR
entitled “What Hadamard missed”.
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From power series to a continued fractions

By a standard operation the given power series (3) in z−1 of f ,

f (z) =
∞
∑

k=0

sk

zk+1 =
s0

z
+

s1

z2 +
s2

z3 + . . . .

can be turned into a continued fraction (which typically
converges in a much larger region). We may also write

f (z) =
s0

z
+

s1

z2 + · · · +
sν−1

zν
+

fν(z)

zν
. (10)

and expand the remainder fν(z) of the power series into a
continued fractions.

In each case, two different types of continued fractions can be
used. So we get two whole series of continued fractions.

It turns out that their coefficients are related by the rhombus
rules.
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Continued fractions: J–fractions and S–fractions

fν(z) :≡

∞
∑

k=0

sν+k

zk+1 = zν

(

f (z) −

ν−1
∑

k=0

sk

zk+1

)

(11)

can be expanded both into a Jacobi fraction or J–fraction

fν(z) =
sν

z − q(ν)
1

−
e(ν)

1 q(ν)
1

z − q(ν)
2 − e(ν)

1

−
e(ν)

2 q(ν)
2

z − q(ν)
3 − e(ν)

2

− · · ·

(12)
and into a formal Stieltjes fraction or S–fraction

fν(z) =
sν

z
−

q(ν)
1

1
−

e(ν)
1

z
−

q(ν)
2

1
−

e(ν)
2

z
− · · · . (13)

The J–fraction is the so-called even part of the S–fraction
obtained by merging two successive terms into one.
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Continued fractions: J–fractions and S–fractions

The odd part of the S–fraction is another formal J–fraction,
obtained by merging the two differently chosen successive
terms into one,

fν(z) =
sν

z











1 +
q(ν)

1

z − q(ν)
1 − e(ν)

1

−

e(ν)
1 q(ν)

2

z − q(ν)
2 − e(ν)

2

−

e(ν)
2 q(ν)

3

z − q(ν)
3 − e(ν)

3

− · · ·











.

(14)

By comparing this J–fraction with the one for

fν+1(z) = zfν(z) − sν , (15)

one recovers Rutishauser’s rhombus rules of the qd algorithm.

This is the nicest derivation of the qd algorithm, but not the
original one.

Rutishauser (1954a) indicates that it may have been suggested
to him by Stiefel.
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Continued fractions, Padé approximations, FOPs

The “partial sums” = convergents = approximants of the
continued fractions are confluent rational interpolants of f .

They are Padé approximants (at ∞) associated with the
moments sk+ν (k = 0, 1, . . . ; ν fixed) of the function fν(z)
defined by

f (z) =
s0

z
+

s1

z2 + · · · +
sν−1

zν
+

fν(z)

zν
.

For fixed ν, the denominators of the convergents (= Padé
approximants) are (formal) orthogonal polynomials p(ν)

k (z).

They can be arranged in a table that he called p–table .
(Analogous to the Padé table.)
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Associated polynomials and their p–table

p–table (P–Schema) :

1 ≡ p(0)
0

1 ≡ p(1)
0

1 ≡ p(2)
0

1 ≡ p(3)
0

1 ≡ p(4)
0

...

p(0)
1

p(1)
1

p(2)
1

p(3)
1

...

q(0)
2

z p(0)
2

p(1)
2

p(2)
2

...

p(0)
3

p(1)
3

p(2)
3

...

. . .

. . .

. . .

p(0)
N−1

p(1)
N−1

...

p(0)
N

p(1)
N

...

p(0)
2 (z) := z p(1)

1 (z) − q(0)
2 p(0)

1 (z)

In the last column, p(0)
N = p(1)

N = . . . is the minimal polynomial.
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Continued fractions, Padé approximations, FOPs
(cont’d)

Rutishauser realized that they are also the Lanczos
polynomials of the (nonsymmetric) Lanczos algorithm
(Lanczos, 1950) for A started with the pair (y0, Aνx0).

Rutishauser never mentions Padé approximants, but he had no
need, since they are just the convergents of the J–fractions and
S–fractions.

For him, actually only the FOPs in the denominator matter.

Later, 1966–74, Householder, Gragg, and Stewart stress the
connection to Padé approximants in several papers.

N.B.: Hadamard’s theorem (1892) ∼ de Montessus de Ballore’s
theorem (1902/1905).
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Associated polynomials: recurrences

The p–table can be built up from the initial column p(ν)
0 ≡ 1 by

the left-to-right recurrence

p(ν)
k (z) := zp(ν+1)

k−1 (z) − q(ν)
k p(ν)

k−1(z) . (16)

Rutishauser (1954a) derived also a top-to-bottom recurrence

p(ν+1)
k (z) := p(ν)

k (z) − e(ν)
k p(ν+1)

k−1 (z) . (17)

and the diagonal 3-term recurrence (with e(ν)
0 :≡ 0, p(ν)

0 :≡ 1)

p(ν)
k+1(z) :=

[

z − q(ν)
k+1 − e(ν)

k

]

p(ν)
k (z) + e(ν)

k q(ν)
k p(ν)

k−1(z) (18)
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Further relations and applications

So, in addition to introducing and investigating the qd algorithm
Rutishauser (1954a) [rec. 5 Aug. 1953] (1954b) [rec. 18 Sep.
1953], (1955a) [rec. 19 July 1954)] explained many connections
to other topics and gave many applications; e.g., in (1954a):

• the connection to continued fractions,

• the connection to the Lanczos BIO algorithm,

• the connection to the CG algorithm,

• computing partial fraction decompositions of rational fcts.

In (1954b):

• summation of badly converging series,

• solving algebraic equations = computing zeros of
polynomials,

• quadratic convergence by using shifts / double shifts.
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Further relations and applications (cont’d)

In (1955a):

• computing EVals by combining Lanczos’ BIO alg. and the
progressive qd algorithm,

• computing EVecs (several new algorithms are suggested),

• EVals and EVecs of infinite matrices.

Still missing:

• tridiagonal matrices (except for computing shifts),

• LU decomposition of these tridiagonal matrices,

• LR algorithm.
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FOPs and tridiagonal matrices

Rutishauser knew well (see Rutishauser (1953) on the Lanczos
BIO algorithm) that associated to the 3-term recurrence (18),

p(ν)
k+1(z) :=

[

z − q(ν)
k+1 − e(ν)

k

]

p(ν)
k (z) + e(ν)

k q(ν)
k p(ν)

k−1(z)

(with fixed ν) there is a nested set of tridiagonal matrices

T(ν)
n =



















q(ν)
1 1

e(ν)
1 q(ν)

1 e(ν)
1 + q(ν)

2 1

e(ν)
2 q(ν)

2 e(ν)
2 + q(ν)

3

. . .
. . .

. . . 1
e(ν)

n−1q(ν)
n−1 e(ν)

n−1 + q(ν)
n



















.

such that p(ν)
n (z) is the characteristic polynomial of T(ν)

n .

Since he was interested in the limit of the zeros of p(ν)
n as

ν −→ ∞ it was natural to look at T(ν)
n .
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LU (LR) decomposition of a tridiagonal matrix

Clearly, T(ν)
n has the LU decomposition (LR-Zerlegung)

T(ν)
n = L(ν)

n R(ν)
n (19)

with

L(ν)
n =





















1

e(ν)
1 1

e(ν)
2

. . .

. . .
. . .

e(ν)
n−1 1





















, R(ν)
n =





















q(ν)
1 1

q(ν)
2 1

q(ν)
3

. . .

. . . 1

q(ν)
n





















.
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The LU (LR) transformation

At some historic moment in 1954, Rutishauser must have
realized that his progressive qd algorithm (9) can be interpreted
as computing this LU factorization T(ν)

n = L(ν)
n R(ν)

n and then
forming

R(ν)
n L(ν)

n =



















e(ν)
1 + q(ν)

1 1

e(ν)
1 q(ν)

2 e(ν)
2 + q(ν)

2 1

e(ν)
2 q(ν)

3 e(ν)
3 + q(ν)

3
. . .

. . . . . . 1

e(ν)
n−1q(ν)

n q(ν)
n



















= T(ν+1)
n
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The LR transformation (cont’d)

So, the qd algorithm consists of performing the step

T(ν)
n = L(ν)

n R(ν)
n  R(ν)

n L(ν)
n = T(ν+1)

n

called LR transformation , which is a similarity transformation:

T(ν+1)
n = R(ν)

n T(ν)
n

(

R(ν)
n

)

−1
.

The likely motivation:

• Diagonals (“rows”) of qd–table correspond to J–fractions,
FOPS (Lanczos polynomials), and tridiagonal matrices.

• Rhombus rules lead us from one diagonal to the next.

• They are matched by construction with J– and S–fractions.

• There are corresponding rules for the polynomials.

• Hence, there must be a rule for transforming one
tridiagonal matrix into the next.
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The LR algorithm

LR algorithm : succession of LR transformations (LR steps).

Convergence of e(ν)
k −→ 0 (k = 1, . . . , n) as ν −→ ∞ means:

Convergence of L(ν)
n to diagonal matrix as ν −→ ∞,

Convergence of T(ν)
n to upper bidiagonal matrix as ν −→ ∞,

The diagonals of T(ν)
n and R(ν)

n ultimately contain eigenvalues of
A,

Generalization to full matrices is immediate, but unimportant.
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The LR algorithm: publications

The first two publication on the LR algorithm were in French,
two two-page notes in the Comptes Rendues: Rutishauser
(1955e) [séance du 3 janvier 1955], Rutishauser/Bauer (1955)
[séance du 25 avril 1955].

1956 Rutishauser produced a mimeographed 51-page ETH
research report in English, entitled “Report on the Solution of
Eigenvalue Problems with the LR–transformation”. Two years
later it got properly published in a National Bureau of Standards
(NBS) book series (Rutishauser, 1958a).

In the same issue: Henrici’s review paper on the qd algorithm,
and Stiefel’s paper on kernel polynomials in NLA.

In 1957, Rutishauser included a 5-page appendix on the LR
transformation in the (German) booklet that compiled and
updated most of his previous work on qd (Rutishauser, 1957a).
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Conclusions

The discovery of the qd and the LR algorithms probably
evolved in the following steps:

• Generalizing Aitken’s work qd table / algorithm.

• Considering the corresponding p–table (gen. Lanczos’
work) and finding the diagonal 3-term recurrence for this
table.

• Making the connection to continued fractions and Lanczos
polynomials (and as well to many other topics).

• Making the connection to tridiagonal matrices.

• Noticing their extremely simple LU decomposition.

• Noticing that

qd algorithm = LR algorithm for tridiagonal matrices

• Generalizing the LR algorithm to full matrices.
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