

Principal Component Analysis

Applied Multivariate Statistics – Spring 2012

Overview

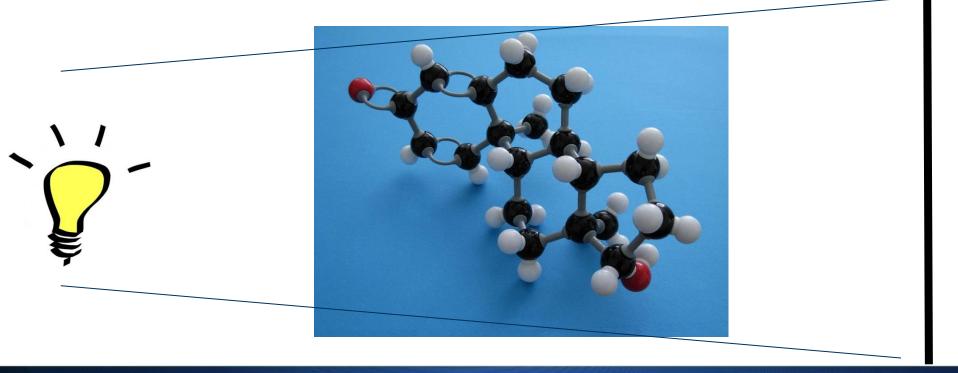
- Intuition
- Four definitions
- Practical examples
- Mathematical example
- Case study

PCA: Goals

- Goal 1: Dimension reduction to a few dimensions (use first few PC's)
- Goal 2: Find one-dimensional index that separates objects best (use first PC)

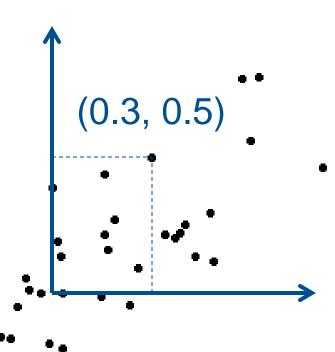
PCA: Intuition

Find low-dimensional projection with largest spread

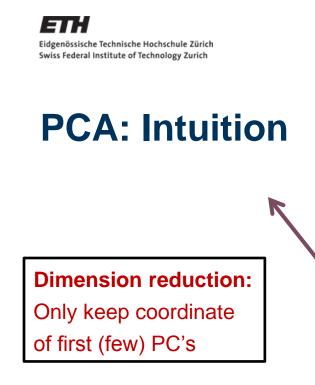


PCA: Intuition

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich



Standard basis



First Principal Component (1.PC)

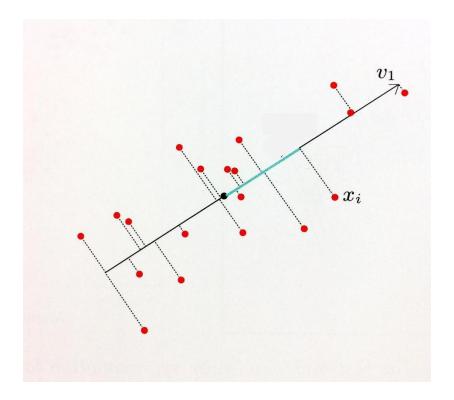
(0.7, 0.1)

Rotated basis:

- Vector 1: Largest variance
- Vector 2: Perpendicular

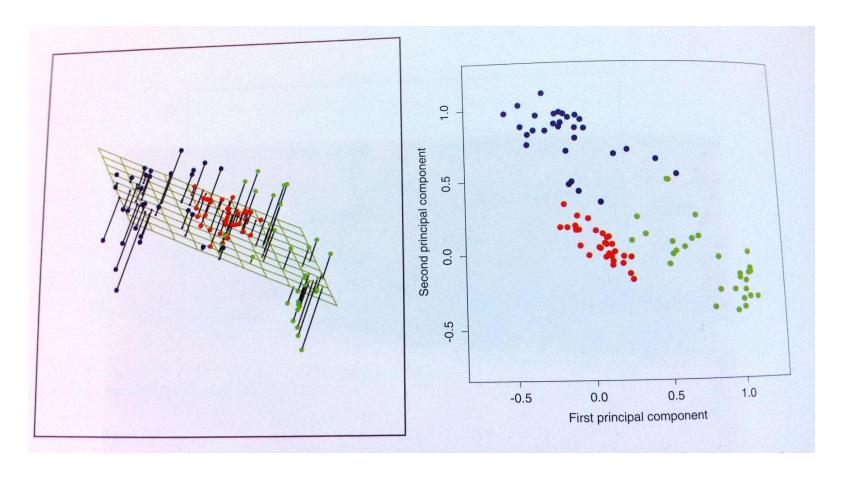
Second Principal Component (2.PC)

PCA: Intuition in 1d



Taken from "The Elements of Stat. Learning", T. Hastie et.al.

PCA: Intuition in 2d



Taken from "The Elements of Stat. Learning", T. Hastie et.al.

PCA: Four equivalent definitions

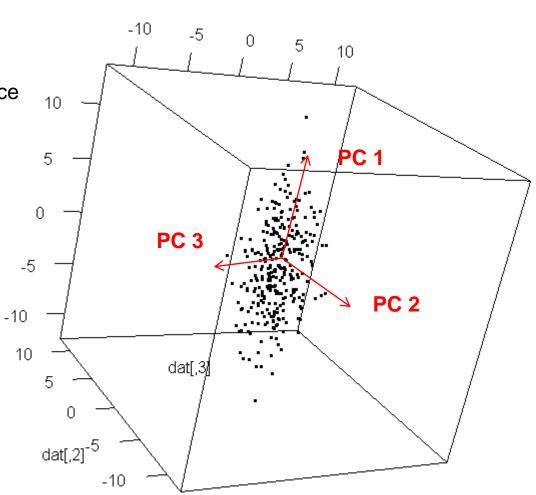
Always center data first!

- **Good for intuition**
- Orthogonal directions with largest variance
- Linear subspace (straight line, plane, etc.) with minimal squared residuals
- Using Spectraldecompsition (=Eigendecomposition)
- Using Singular Value Decomposition (SVD)

Good for computing

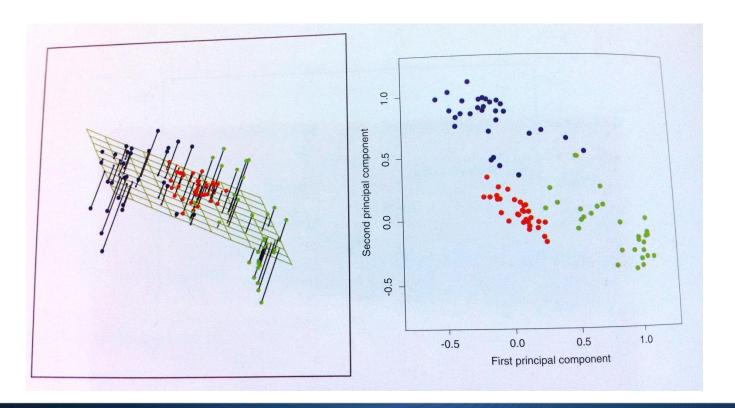
PCA (Version 1): Orthogonal directions

- PC 1 is direction of largest variance
- PC 2 is
 - perpendicular to PC 1
 - again largest variance
- PC 3 is
 - perpendicular to PC 1, PC 2
 - again largest variance
- etc.



PCA (Version 2): Best linear subspace

- PC 1: Straight line with smallest orthogonal distance to all points
- PC 1 & PC 2: Plane with with smallest orthogonal distance to all points
- etc.



PCA (Version 3): Eigendecomposition

Spectral Decomposition Theorem:

Every symmetric, positive semidefinite Matrix R can be rewritten as

$$R = A D A^T$$

where D is diagonal and A is orthogonal.

- Eigenvectors of Covariance/Correlation matrix are PC's Columns of A are PC's
- Diagonal entries of D (=eigenvalues) are variances along PC's (usually sorted in decreasing order)
- R: Function "princomp"

PCA (Version 4): Singular Value Decomposition

Singular Value Decomposition:

Every R can be rewritten as

$$R = U D V^T$$

where D is diagonal and U, V are orthogonal.

- Columns of V are PC's
- Diagonal entries of D are "singular values"; related to standard deviation along PC's (usually sorted in decreasing order)
- UD contains samples measured in PC coordinates
- R: Function "prcomp"

 $y_1 = 0.69 \times 1 + 0.72 \times 2$

Example: Headsize of sons

```
Standard deviation in direction of 1.PC,
```

 $Var = 12.69^2 = 167.77$

```
> summary(head_pca, loadings = TRUE)
Importance of components:
                       Comp. 1 Comp. 2
Standard deviation
                        12, 69
                                 5.22←
Proportion of Variance
                         0.86
                                 0.14
                          0.86
                                 1.00
Cumulative Proportion
Loadings:
      Comp.1 Comp.2
                      1.PC contains
head1
       0.69
             -0.72
                      167.77/196.1 = 0.86
head2
      0.72
              0.69
```

 $y_2 = -0.72 \times 1 + 0.69 \times 2$

of total variance

Standard deviation in direction of 2.PC,

 $Var = 5.22^2 = 28.33$

Total Variance = 167.77 + 28.33 = 196.1

2.PC contains

28.33/196.1 = 0.14

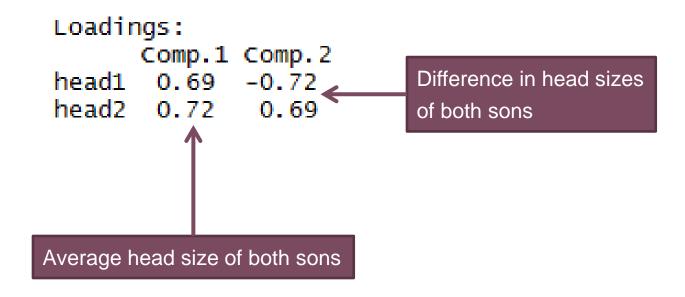
of total variance

Computing PC scores

- Substract mean of all variables
- Output of princomp: \$scores
 First column corresponds to coordinate in direction of 1.PC,
 Second col. corresponds to coordinate in direction of 2.PC,
 etc.
- Manually (e.g. for new observations):
 Scalar product of loading of ith PC gives coordinate in direction of ith PC
- Predict new scores: Use function "predict" (see ?predict.princomp)
- Example: Headsize of sons

Interpretation of PCs

- Oftentimes hard
- Look at loadings and try to interpret:



To scale or not to scale...

- R: In princomp, option "cor = TRUE" scales variables
 Alternatively: Use correlation matrix instead of covariance matrix
- Use correlation, if different units are compared
- Using covariance will find the variable with largest spread as 1. PC
- Example: Blood Measurement

How many PC's?

- No clear cut rules, only rules of thumb
- Rule of thumb 1: Cumulative proportion should be at least 0.8 (i.e. 80% of variance is captured)
- Rule of thumb 2: Keep only PC's with above-average variance (if correlation matrix / scaled data was used, this implies: keep only PC's with eigenvalues at least one)
- Rule of thumb 3: Look at scree plot; keep only PC's before the "elbow" (if there is any...)

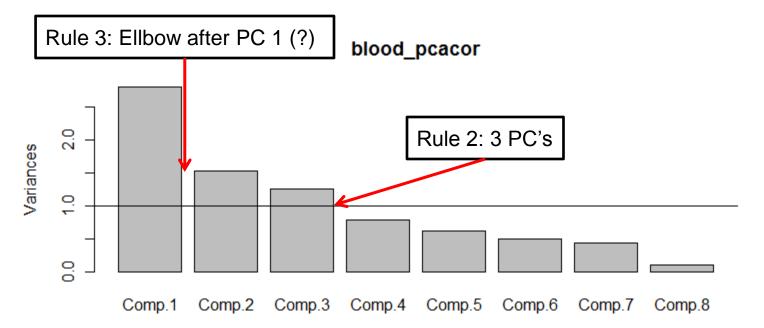
How many PC's: Blood Example

Rule 1: 5 PC's

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Standard deviation 1.6710100 1.2375848 1.1177138 0.88227419 0.78839505 0.69917350 Proportion of Variance 0.3490343 0.1914520 0.1561605 0.09730097 0.97759584 0.06110545 Cumulative Proportion 0.3490343 0.5404863 0.6966468 0.79394778 0.87164363 0.93274908 Comp.7 Comp.8

Standard deviation 0.66002394 0.31996216 Proportion of Variance 0.05445395 0.01279697 Cumulative Proportion 0.98720303 1.00000000



Mathematical example in detail: Computing eigenvalues and eigenvectors

See blackboard

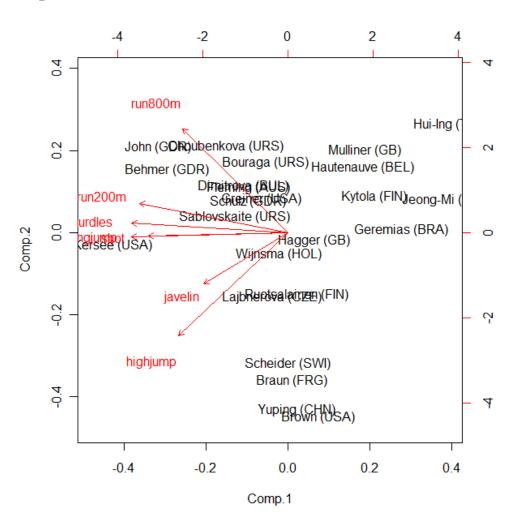
Case study: Heptathlon Seoul 1988

Biplot: Show info on samples AND variables

Approximately true:

- Data points: Projection on first two PCs
 Distance in Biplot ~ True Distance
- Projection of sample onto arrow gives original (scaled) value of that variable
- Arrowlength: Variance of variabel
- Angle between Arrows: Correlation

Approximation is often crude; good for quick overview



PCA: Eigendecomposition vs. SVD

- PCA based on Eigendecomposition: princomp
 - + easier to understand mathematical background
 - + more convenient summary method
- PCA based on SVD: prcomp
 - + numerically more stable
 - + still works if more dimensions than samples
- Both methods give same results up to small numerical differences

Concepts to know

- 4 definitions of PCA
- Interpretation: Output of princomp, biplot
- Predict scores for new observations
- How many PC's?
- Scale or not?
- Know advantages of PCA based on SVD

R functions to know

- princomp, biplot
- (prcomp just know that it exists and that it does the SVD approach)