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Basics

Notation

Notations

R: The field of real numbers
C: The field of complex numbers
Rn: The space of vectors of n real components
Cn: The space of vectors of n complex components
Scalars : lowercase letters, a, b, c. . ., and α, β, γ . . ..
Vectors : boldface lowercase letters, a, b, c, . . ..

x ∈ Rn ⇐⇒ x =


x1
x2
...

xn

 , xi ∈ R.

We often make statements that hold for real or complex vectors.
−→ x ∈ Fn.

LSEVP, Lecture 2, March 5, 2014 5/46



Numerical Methods for Solving Large Scale Eigenvalue Problems

Basics

Notation

I The inner product of two n-vectors in C:

(x, y) =
n∑

i=1

xi ȳi = y∗x,

I y∗ = (ȳ1, ȳ2, . . . , ȳn): conjugate transposition of complex
vectors.

I x and y are orthogonal, x ⊥ y, if x∗y = 0.

I Norm in F, (Euclidean norm or 2-norm)

‖x‖ =
√

(x, x) =

(
n∑

i=1

|xi |2
)1/2

.
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Basics

Notation

I

A ∈ Fm×n ⇐⇒ A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

 , aij ∈ F.

A∗ ∈ Fn×m ⇐⇒ A∗ =


ā11 ā21 . . . ām1

ā12 ā22 . . . ām2

...
...

...
ā1n ā2n . . . ānm


is the Hermitian transpose of A. For square matrices:

I A ∈ Fn×n is called Hermitian ⇐⇒ A∗ = A.
I Real Hermitian matrix is called symmetric.
I U ∈ Fn×n is called unitary ⇐⇒ U−1 = U∗.
I Real unitary matrices are called orthogonal.
I A ∈ Fn×n is called normal ⇐⇒ A∗A = AA∗.

Both, Hermitian and unitary matrices are normal.
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Basics

Notation

I Norm of a matrix (matrix norm induced by vector norm):

‖A‖ := max
x6=0

‖Ax‖
‖x‖

= max
‖x‖=1

‖Ax‖.

I The condition number of a nonsingular matrix:

κ(A) = ‖A‖‖A−1‖.

U unitary =⇒ ‖Ux‖ = ‖x‖ for all x =⇒ κ(U) = 1.
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Basics

Statement of the problem

The (standard) eigenvalue problem:

Given a square matrix A ∈ Fn×n.
Find scalars λ ∈ C and vectors x ∈ Cn, x 6= 0, such
that

Ax = λx, (1)

i.e., such that
(A− λI )x = 0 (2)

has a nontrivial (nonzero) solution.

We are looking for numbers λ such that A− λI is singular.
The pair (λ, x) be a solution of (1) or (2).

I λ is called an eigenvalue of A,

I x is called an eigenvector corresponding to λ
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Statement of the problem

I (λ, x) is called eigenpair of A.

I The set σ(A) of all eigenvalues of A is called spectrum of A.

I The set of all eigenvectors corresponding to an eigenvalue λ
together with the vector 0 form a linear subspace of Cn called
the eigenspace of λ.

I The eigenspace of λ is the null space of λI − A: N (λI − A).

I The dimension of N (λI − A) is called geometric multiplicity
g(λ) of λ.

I An eigenvalue λ is a root of the characteristic polynomial

χ(λ) := det(λI − A) = λn + an−1λ
n−1 + · · ·+ a0.

The multiplicity of λ as a root of χ is called the algebraic
multiplicity m(λ) of λ.

1 ≤ g(λ) ≤ m(λ) ≤ n, λ ∈ σ(A), A ∈ Fn×n.
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Statement of the problem

I y is called left eigenvector corresponding to λ

y∗A = λy∗

I Left eigenvector of A is a right eigenvector of A∗,
corresponding to the eigenvalue λ̄, A∗y = λ̄y.

I A is an upper triangular matrix,

A =


a11 a12 . . . a1n

a22 . . . a2n
. . .

...
ann

 , aik = 0 for i > k.

⇐⇒ det(λI − A) =
n∏

i=1

(λ− aii ).
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Basics

Statement of the problem

(Generalized) eigenvalue problem

Given two square matrices A,B ∈ Fn×n.
Find scalars λ ∈ C and vectors x ∈ C, x 6= 0, such that

Ax = λBx, (3)

or, equivalently, such that

(A− λB)x = 0 (4)

has a nontrivial solution.

The pair (λ, x) is a solution of (3) or (4).
I λ is called an eigenvalue of A relative to B,

I x is called an eigenvector of A relative to B corresponding to λ.

I (λ, x) is called an eigenpair of A relative to B,

I The set σ(A;B) of all eigenvalues of (3) is called the spectrum of A
relative to B.
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Basics

Similarity transformations

Similarity transformations I

Matrix A is similar to a matrix C , A ∼ C , ⇐⇒ there is a
nonsingular matrix S such that

S−1AS = C . (5)

The mapping A→ S−1AS is called a similarity transformation.

Theorem

Similar matrices have equal eigenvalues with equal multiplicities. If
(λ, x) is an eigenpair of A and C = S−1AS then (λ, S−1x) is an
eigenpair of C .
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Similarity transformations

Similarity transformations II
Proof:

Ax = λx and C = S−1AS =⇒ CS−1x = S−1ASS−1x = λS−1x

Hence A and C have equal eigenvalues and their geometric
multiplicity is not changed by the similarity transformation.

det(λI − C ) = det(λS−1S − S−1AS)

= det(S−1(λI − A)S)

= det(S−1) det(λI − A) det(S)

= det(λI − A)

the characteristic polynomials of A and C are equal and hence also
the algebraic eigenvalue multiplicities are equal.
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Basics

Similarity transformations

Unitary similarity transformations I

Two matrices A and C are called unitarily similar (orthogonally
similar) if S (C = S−1AS = S∗AS) is unitary (orthogonal).
Reasons for the importance of unitary similarity transformations:

1. U is unitary −→ ‖U‖ = ‖U−1‖ = 1 −→ κ(U) = 1.
Hence, if C = U−1AU −→ C = U∗AU and ‖C‖ = ‖A‖.
If A is disturbed by δA ( roundoff errors introduced when
storing the entries of A in finite-precision arithmetic)

−→ U∗(A + δA)U = C + δC , ‖δC‖ = ‖δA‖.

Hence, errors (perturbations) in A are not amplified by a
unitary similarity transformation. This is in contrast to
arbitrary similarity transformations.
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Basics

Similarity transformations

Unitary similarity transformations II
2. Preservation of symmetry: If A is symmetric

A = A∗, U−1 = U∗ : C = U−1AU = U∗AU = C ∗

3. For generalized eigenvalue problems, similarity transformations
are not so crucial since we can operate with different matrices
from both sides. If S and T are nonsingular

Ax = λBx ⇐⇒ TAS−1Sx = λTBS−1Sx.

This is called equivalence transformation of A,B.
σ(A; B) = σ(TAS−1,TBS−1).
Special Case: B is invertible & B = LU is LU-factorization of B.

−→ Set S = U and T = L−1 ⇒ TBU−1 = L−1LUU−1 = I

⇒ σ(A; B) = σ(L−1AU−1, I ) = σ(L−1AU−1).
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Basics

Schur decomposition

Schur decomposition I

Theorem

If A ∈ Cn×n then there is a unitary matrix U ∈ Cn×n such that

U∗AU = T (6)

is upper triangular. The diagonal elements of T are the eigenvalues
of A.

Proof: By induction:

1. For n = 1, the theorem is obviously true.

2. Assume that the theorem holds for matrices of order ≤ n − 1.
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Schur decomposition

Schur decomposition II
3. Let (λ, x), ‖x‖ = 1, be an eigenpair of A, Ax = λx. Construct

a unitary matrix U1 with first column x (e.g. the Householder
reflector U1 with U1x = e1). Partition U1 = [x,U]. Then

U∗1AU1 =

[
x∗Ax x∗AU

U
∗
Ax U

∗
AU

]
=

[
λ × · · ·×
0 Â

]
as Ax = λx and U

∗
x = 0 by construction of U1. By

assumption, there exists a unitary matrix Û ∈ C(n−1)×(n−1)

such that Û∗ÂÛ = T̂ is upper triangular. Setting
U := U1(1⊕ Û), we obtain (6).
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Schur decomposition

Schur vectors I

U = [u1,u2, . . . ,un]
U∗AU = T is a Schur decomposition of A ⇐⇒ AU = UT .
The k-th column of this equation is

Auk = λuk +
k−1∑
i=1

tikui , λk = tkk . (7)

=⇒ Auk ∈ span{u1, . . . ,uk}, ∀k.

The first k Schur vectors u1, . . . ,uk form an invariant subspace
for A. (A subspace V ⊂ Fn is called invariant for A if AV ⊂ V.)

I From (7): the first Schur vector is an eigenvector of A.

I The other columns of U, are in general not eigenvectors of A.

The Schur decomposition is not unique.The eigenvalues can be

arranged in any order in the diagonal of T .
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The real Schur decomposition

The real Schur decomposition I

* Real matrices can have complex eigenvalues. If complex eigenvalues exist,
then they occur in complex conjugate pairs! If λ is an eigenvalue of the
real matrix A −→ λ̄ is an eigenvalue of A.

Theorem
(Real Schur decomposition) If A ∈ Rn×n then there is an orthogonal matrix
Q ∈ Rn×n such that

QTAQ =


R11 R12 · · · R1m

R22 · · · R2m

. . .
...

Rmm

 (8)

is upper quasi-triangular. The diagonal blocks Rii are either 1× 1 or 2× 2
matrices. A 1× 1 block corresponds to a real eigenvalue, a 2× 2 block
corresponds to a pair of complex conjugate eigenvalues.
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The real Schur decomposition

The real Schur decomposition II
Remark: The matrix [

α β
−β α

]
, α, β ∈ R,

has the eigenvalues α + iβ and α− iβ.
Let λ = α+ iβ, β 6= 0, be an eigenvalue of A with eigenvector x = u + iv.

Then λ̄ = α− iβ is an eigenvalue corresponding to x̄ = u− iv.

Ax = A(u + iv) = Au + iAv,

λx = (α + iβ)(u + iv) = (αu− βv) + i(βu + αv).

−→ Ax̄ = A(u− iv) = Au− iAv,

= (αu− βv)− i(βu + αv)

= (α− iβ)u− i(α− iβ)v = (α− iβ)(u− iv) = λ̄x̄.
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The real Schur decomposition

The real Schur decomposition III
k : the number of complex conjugate pairs.
Now, let’s prove the theorem by induction on k .
Proof:

I First k = 0. In this case, A has real eigenvalues and
eigenvectors. We can repeat the proof of the Schur
decomposition Theorem in real arithmetic to get the
decomposition (U∗AU = T ) with U ∈ Rn×n and T ∈ Rn×n.
So, there are n diagonal blocks Rjj all of which are 1× 1.

R11 R12 · · · R1m

R22 · · · R2m

. . .
...

Rmm
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The real Schur decomposition

The real Schur decomposition IV
I Assume that the theorem is true for all matrices with fewer

than k complex conjugate pairs. Then, with λ = α + iβ,
β 6= 0 and x = u + iv,

A[u, v] = [u, v]

[
α β
−β α

]
.

Let {x1, x2} be an orthonormal basis of span([u, v]). Then,
since u and v are linearly independent (If u and v were linearly

dependent then it follows that β must be zero.), there is a
nonsingular 2× 2 real square matrix C with

[x1, x2] = [u, v]C .
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The real Schur decomposition

The real Schur decomposition V

A[x1, x2] = A[u, v]C = [u, v]

[
α β
−β α

]
C

= [x1, x2]C−1
[
α β
−β α

]
C =: [x1, x2]S .

S and

[
α β
−β α

]
are similar and therefore have equal

eigenvalues. Now, construct an orthogonal matrix
[x1, x2, x3, . . . , xn] =: [x1, x2,W ].

[
[x1, x2],W

]T
A
[
[x1, x2],W

]
=

 xT1
xT2

W T

 [[x1, x2]S ,AW
]

=

[
S [x1, x2]TAW
O W TAW

]
.
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The real Schur decomposition

The real Schur decomposition VI
The matrix W TAW has less than k complex-conjugate
eigenvalue pairs. Therefore, by the induction assumption,
there is an orthogonal Q2 ∈ R(n−2)×(n−2) such that the matrix

QT
2 (W TAW )Q2

is quasi-triangular. Thus, the orthogonal matrix

Q = [x1, x2, x3, . . . , xn]

(
I2 O
O Q2

)
transforms A similarly to quasi-triangular form.
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Hermitian matrices

Matrix A ∈ Fn×n is Hermitian if A = A∗.

In the Schur decomposition A = UΛU∗ for Hermitian matrices the
upper triangular Λ is Hermitian and therefore diagonal.

Λ = Λ∗ = (U∗AU)∗ = U∗A∗U = U∗AU = Λ,

each diagonal element λi of Λ satisfies λi = λi =⇒ Λ must be real.

Hermitian/symmetric matrix is called positive definite (positive
semi-definite) if all its eigenvalues are positive (nonnegative).

HPD or SPD =⇒ Cholesky factorization exists.
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Hermitian matrices

Spectral decomposition

Theorem

(Spectral theorem for Hermitian matrices) Let A be Hermitian.
Then there is a unitary matrix U and a real diagonal matrix Λ such
that

A = UΛU∗ =
n∑

i=1

λiuiu
∗
i . (9)

The columns u1, . . . ,un of U are eigenvectors corresponding to the
eigenvalues λ1, . . . , λn. They form an orthonormal basis for Fn.

The decomposition (9) is called a spectral decomposition of A.
As the eigenvalues are real we can sort them with respect to their
magnitude. We can, e.g., arrange them in ascending order such
that λ1 ≤ λ2 ≤ · · · ≤ λn.
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I If λi = λj , then any nonzero linear combination of ui and uj is
an eigenvector corresponding to λi ,

A(uiα + ujβ) = uiλiα + ujλjβ = (uiα + ujβ)λi .

I Eigenvectors corresponding to different eigenvalues are
orthogonal. Au = uλ and Av = vµ, λ 6= µ.

λu∗v = (u∗A)v = u∗(Av) = u∗vµ,

and thus
(λ− µ)u∗v = 0,

from which we deduce u∗v = 0 as λ 6= µ.
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Hermitian matrices

Eigenspace

I The eigenvectors corresponding to a particular eigenvalue λ
form a subspace, the eigenspace
{x ∈ Fn,Ax = λx} = N (A− λI ).

I They are perpendicular to the eigenvectors corresponding to
all the other eigenvalues.

I Therefore, the spectral decomposition is unique up to ± signs
if all the eigenvalues of A are distinct.

I In case of multiple eigenvalues, we are free to choose any
orthonormal basis for the corresponding eigenspace.

Remark: The notion of Hermitian or symmetric has a wider
background. Let 〈x, y〉 be an inner product on Fn. Then a matrix A
is symmetric with respect to this inner product if 〈Ax, y〉 = 〈x,Ay〉
for all vectors x and y. All the properties of Hermitian matrices hold

similarly for matrices symmetric with respect to a certain inner product.
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Hermitian matrices

Matrix polynomials

p(λ): polynomial of degree d ,
p(λ) = α0 + α1λ+ α2λ

2 + · · ·+ αdλ
d .

Aj = (UΛU∗)j = UΛjU∗

Matrix polynomial:

p(A) =
d∑

j=0

αjA
j =

d∑
j=0

αjUΛjU∗ = U

 d∑
j=0

αjΛ
j

U∗.

This equation shows that

I p(A) has the same eigenvectors as the original matrix A.
I The eigenvalues are modified though, λk becomes p(λk).
I More complicated functions of A can be computed if the

function is defined on spectrum of A.
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Theorem (Jordan normal form)

For every A ∈ Fn×n there is a nonsingular matrix X ∈ Fn×n such
that

X−1AX = J = diag(J1, J2, . . . , Jp),

where

Jk = Jmk
(λk) =


λk 1

λk
. . .
. . . 1

λk

 ∈ Fmk×mk

are called Jordan blocks and m1 + · · ·+ mp = n. The values λk
need not be distinct. The Jordan matrix J is unique up to the
ordering of the blocks. The transformation matrix X is not unique.
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Jordan normal form I

I Matrix diagonalizable ⇐⇒ all Jordan blocks are 1× 1 (trivial).
In this case the columns of X are eigenvectors of A.

I One eigenvector associated with each Jordan block

J2(λ)e1 =

[
λ 1
0 λ

] [
1
0

]
= λ e1.

I Nontrivial blocks give rise to generalized eigenvectors
e2, . . . , emk

since

(Jk(λ)− λI )ej+1 = ej , j = 1, . . . ,mk − 1.

I Computation of Jordan blocks is unstable.
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Jordan normal form

Jordan normal form II
Let Y := X−∗ and let X = [X1,X2, . . . ,Xp] and
Y = [Y1,Y2, . . . ,Yp] be partitioned according to J. Then,

A = XJY ∗ =

p∑
k=1

XkJkY ∗k =

p∑
k=1

(λkXkY ∗k + XkNkY ∗k )

=

p∑
k=1

(λkPk + Dk),

where Nk = Jmk
(0), Pk := XkY ∗k , Dk := XkNkY ∗k .

Since P2
k = Pk , Pk is a projector on R(Pk) = R(Xk). It is called a

spectral projector.
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Projections I

A matrix P that satisfies P2 = P is called a projection.

A projection is a square matrix. If P is a projection then Px = x
for all x in the range R(P) of P. In fact, if x ∈ R(P) then x = Py
for some y ∈ Fn and Px = P(Py) = P2y = Py = x.

x

x

1

2
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Projections

Projections II
Example: Let

P =

(
1 2
0 0

)
.

The range of P is R(P) = F× {0}. The effect of P is depicted in Figure

on previous page: All points x that lie on a line parallel to span{(2,−1)∗}
are mapped on the same point on the x1 axis. So, the projection is along

span{(2,−1)∗} which is the null space N (P) of P.

If P is a projection then I − P is a projection.

If Px = 0 then (I − P)x = x.
=⇒ range of I − P equals null space of P: R(I − P) = N (P).

It can be shown that R(P) = N (P∗)⊥.

LSEVP, Lecture 2, March 5, 2014 35/46



Numerical Methods for Solving Large Scale Eigenvalue Problems

Basics

Projections

Projections III
Notice that R(P) ∩R(I − P) = N (I − P) ∩N (P) = {0}.

So, any vector x can be uniquely decomposed into

x = x1 + x2, x1 ∈ R(P), x2 ∈ R(I − P) = N (P).

The most interesting situation occurs if the decomposition is
orthogonal, i.e., if x∗1x2 = 0 for all x.

A matrix P is called an orthogonal projection if

(i) P2 = P
(ii) P∗ = P.
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Projections IV
Example: Let q be an arbitrary vector of norm 1, ‖q‖ = q∗q = 1.
Then P = qq∗ is the orthogonal projection onto span{q}.

Example: Let Q ∈ Fn×p with Q∗Q = Ip. Then QQ∗ is the
orthogonal projector onto R(Q), which is the space spanned by
the columns of Q.
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Rayleigh quotient I

The Rayleigh quotient of A at x is defined as

λ = ρ(x) :=
x∗Ax

x∗x
, x 6= 0

If x is an approximate eigenvector, then ρ(x) is a reasonable choice
for the corresponding eigenvalue.
Using the spectral decomposition A = UΛU∗,

x∗Ax = x∗UΛU∗x =
n∑

i=1

λi |u∗i x|2.

Similarly, x∗x =
∑n

i=1 |u∗i x|2.With λ1 ≤ λ2 ≤ · · · ≤ λn, we have

λ1

n∑
i=1

|u∗i x|2 ≤
n∑

i=1

λi |u∗i x|2 ≤ λn
n∑

i=1

|u∗i x|2.
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Rayleigh quotient

Rayleigh quotient II
=⇒ λ1 ≤ ρ(x) ≤ λn, for all x 6= 0.

ρ(uk) = λk ,

the extremal values λ1 and λn are attained for x = u1 and x = un.

Theorem

Let A be Hermitian. Then the Rayleigh quotient satisfies

λ1 = min ρ(x), λn = max ρ(x). (10)

As the Rayleigh quotient is a continuous function it attains all
values in the closed interval [λ1, λn].
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Rayleigh quotient

Theorem (Minimum-maximum principle)

Let A be Hermitian. Then

λp = min
X∈Fn×p , rank(X )=p

max
x6=0

ρ(X x)

Proof: Let Up−1 = [u1, . . . ,up−1]. For every X ∈ Fn×p with full
rank we can choose x 6= 0 such that U∗p−1X x = 0. Then
0 6= z := X x =

∑n
i=p ziui and

ρ(z) ≥ λp.

For equality choose X = [u1, . . . ,up].
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Theorem (Monotonicity principle)

Let A be Hermitian and let Q := [q1, . . . ,qp] with Q∗Q = Ip. Let
A′ := Q∗AQ with eigenvalues λ′1 ≤ · · · ≤ λ′p. Then

λk ≤ λ′k , 1 ≤ k ≤ p.

Proof: Let w1, . . . ,wp ∈ Fp, w∗i wj = δij , be the eigenvectors of A′,

A′wi = λ′iwi , 1 ≤ i ≤ p.

Vectors Qw1, . . . ,Qwp are normalized and mutually orthogonal.
Construct normalized vector x0 = Q(a1w′1 + · · ·+ akw′k) ≡ Qa
that is orthogonal to the first k − 1 eigenvectors of A, x∗0ui = 0,
1 ≤ i ≤ k − 1. Minimum-maximum principle:
=⇒ λk ≤ R(x0) = a∗Q∗AQa =

∑k
i=1|a|2i λ′i ≤ λ′k .
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Trace of a matrix

The trace of a matrix A ∈ Fn×n is defined to be the sum of the
diagonal elements of a matrix. Matrices that are similar have equal
trace. Hence, by the spectral theorem,

trace(A) =
n∑

i=1

aii =
n∑

i=1

λi .

Theorem

(Trace theorem)

λ1 + λ2 + · · ·+ λp = min
X∈Fn×p ,X∗X=Ip

trace(X ∗AX )
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The singular value decomposition (SVD) I

Theorem

(Singular value decomposition) If A ∈ Cm×n then there exist
unitary matrices U ∈ Cm×m and V ∈ Cn×n such that

U∗AV = Σ =

(
diag(σ1, . . . , σp) 0

0 0

)
, p = min(m, n),

where σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

Relation of the singular value decomposition with the spectral
decomposition of the Hermitian matrices A∗A and AA∗,

A = UΣV ∗ =⇒ A∗A = V Σ2V ∗, AA∗ = UΣ2U∗. (11)
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The singular value decomposition (SVD) II
The SVD of dense matrices is computed in a way that is very
similar to the dense Hermitian eigenvalue problem. However, in the
presence of roundoff error, it is not advisable to use the matrices
A∗A or AA∗. Instead, let us consider the (n + m)× (n + m)
Hermitian matrix [

O A
A∗ O

]
. (12)

Using the SVD we get[
O A
A∗ O

]
=

[
U O
O V

] [
O Σ

ΣT O

] [
U∗ O
O V ∗

]
.

I Assume that m ≥ n.

LSEVP, Lecture 2, March 5, 2014 44/46



Numerical Methods for Solving Large Scale Eigenvalue Problems

Basics

The singular value decomposition (SVD)

The singular value decomposition (SVD) III

I Then write U = [U1,U2] where U1 ∈ Fm×n and Σ =

[
Σ1

O

]
with Σ1 ∈ Rn×n.

I

[
O A
A∗ O

]
=

[
U1 U2 O
O O V

]O O Σ1

O O O
Σ1 O O

U∗1 O
U∗2 O
O V ∗


=

[
U1 O U2

O V O

]O Σ1 O
Σ1 O O
O O O

U∗1 O
O V ∗

U∗2 O

 .
The first and third diagonal zero blocks have order n. The
middle diagonal block has order n −m.
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The singular value decomposition (SVD) IV
I Now, employ the fact that[

0 σ
σ 0

]
=

1√
2

[
1 1
1 −1

] [
σ 0
0 −σ

]
1√
2

[
1 1
1 −1

]
to obtain

[
O A
A∗ O

]
=

[
1√
2

U1
1√
2

U1 U2
1√
2

V − 1√
2

V O

]Σ1 O O
O −Σ1 O
O O O

 1√
2

U∗1
1√
2

V ∗

1√
2

U∗1 − 1√
2

V ∗

U∗2 O

 .
So there are 3 ways to treat the singular value decomposition as an
eigenvalue problem. One of the two forms in (11) is used implicitly
in the QR algorithm for dense matrices A, see Golub & van Loan
or the LAPACK users guide.
The form (12) is suited if A is a sparse matrix.
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