
T he QR algorithm is one of the most important, widely
used, and successful tools we have in technical
computation. Four variants of it are in MA T L A B’ s

mathematical core. They compute the eigenvalues of real
symmetric matrices, eigenvalues of real nonsymmetric matrices,
eigenvalues of pairs of complex matrices, and singular values of
general matrices. These functions are used, in turn, to find zeros
of polynomials, to solve special linear systems, to assess stability,
and to perform many other tasks in various toolboxes.

Dozens of people have contributed to the
development of the various QR algorithms. But
the first complete implementation and an
important convergence analysis are due to J. H.
Wilkinson. Wilkinson’s book, The Algebraic
Eigenvalue Problem, as well as two fundamental
papers, were published in 1965, so it is
reasonable to consider 1995 the thirtieth
anniversary of the practical QR algorithm.

The QR algorithm is not infallible. It is an iterative process
that is not always guaranteed to converge. So, on rare
occasions, MATLAB users might see this message:

Error using ==> eig
Solution will not converge

A few years ago, recipients of this message might have just
accepted it as unavoidable. But today, most people are surprised
or annoyed; they have come to expect infallibility. So, we are still
modifying our implementation, trying to improve convergence
without sacrificing accuracy or applicability. We have recently
made a couple of improvements that will be available in the next
release of MA T L A B, but which we can tell you about now.

The name “QR” is derived from the use of the letter Q to
denote orthogonal matrices and the letter R to denote right
triangular matrices. There is a qr function in MATLAB, but it
computes the QR factorization, not the QR algorithm. Any
matrix, real or complex, square or rectangular, can be
factored into the product of a matrix Q with orthonormal
columns and matrix R that is nonzero in only its upper, or
right, triangle. You might remember the Gram Schmidt
process, which does pretty much the same thing.

Using the qr function, a simple variant of the QR algorithm
can be expressed as a MATLAB one-liner. Let A be a square,
n-by-n matrix, and let I = eye(n,n). Then one step of the
QR iteration is given by

s = A(n,n); [Q,R] = qr(A – s*I); A = R*Q + s*I

If you enter this on one line, you can use the up-arrow key to
iterate. The quantity s is the shift; it accelerates convergence.
The QR factorization makes the matrix triangular.

A – sI = QR

Then the reverse order multiplication, RQ, restores the
eigenvalues because

RQ + sI = Q'(A – sI)Q + sI = Q'AQ

so the new A is similar to the original A. Each iteration effectively
transfers some “mass” from the lower to the upper triangle,
while preserving the eigenvalues. As the iterations are repeated,
the matrix often approaches an upper triangular matrix with the
eigenvalues conveniently displayed on the diagonal.

For example, start with

A = gallery(3) =

–149 –50 –154
537 180 546
–27 –9 –25

The first iteration,

28.8263 –259.8671 773.9292
1.0353 –8.6686 33.1759

–0.5973 5.5786 –14.1578

is beginning to look upper triangular. After five more
iterations we have

3.0321 –8.0851 804.6651
0.0017 0.9931 145.5046
–0.0001 0.0005 1.9749

This matrix was contrived so its eigenvalues are equal to 1, 2,
and 3. We can begin to see these three values on the diagonal.
Eight more iterations give

Striving for infallibility

by Cleve Moler

Singular values of the
Fourier matrix.

C l e v e ’ s C o r n e r

The QR algorithm

3.0716 –7.6952 802.1201
0.0193 0.9284 158.9556

0 0 2.0000
One of the eigenvalues has been computed to full accuracy
and the below-diagonal element adjacent to it has become
zero. It is time to deflate the problem and continue the
iteration on the 2-by-2 upper left submatrix.

The QR algorithm is never practiced in this simple form. It is
always preceded by a reduction to Hessenberg form, in which all
the elements below the subdiagonal are zero. This reduced form
is preserved by the iteration, and the factorizations can be done
much more quickly. Furthermore, the shift strategy is more
sophisticated, and is different for various forms of the algorithm.

The simplest variant involves real, symmetric matrices. The
reduced form in this case is tridiagonal. Wilkinson provided a
shift strategy that allowed him to guarantee convergence. Even
in the presence of roundoff error, we do not know of any
examples that cause the MA T L A B implementation to fail.

The situation for real, nonsymmetric matrices is much more
complicated. In this case, the given matrix has real elements, but
its eigenvalues may well be complex. Real matrices are used
throughout, with a double shift strategy that can handle two real
eigenvalues, or a complex conjugate pair. Even thirty years ago,
counterexamples to the basic iteration were known and
Wilkinson introduced an “ad hoc” shift to handle them. But no
one has been able to prove a complete convergence theorem.

We now know a 4-by-4 example that will cause the real,
nonsymmetric QR algorithm to fail, even with Wilkinson’s ad
hoc shift, but only on certain computers. The matrix is

A =
0 2 0 –1
1 0 0 0
0 1 0 0
0 0 1 0

This is the companion matrix of the polynomial
p(x) = x 4 - 2x 2 + 1, and the statement

roots([1 0 -2 0 1])

calls for the computation of eig(A). The values = 1 and
= –1 are both eigenvalues, or polynomial roots, with

multiplicity two. For real x, the polynomial p(x) is never
negative. These double roots slow down the iteration so much
that, on some computers, the vagaries of roundoff error
interfere before convergence is detected. The iteration can
wander forever, trying to converge but veering off when it gets
close.

Similar behavior is shown by examples of the form

0 1 0 0
1 0 – 0
0 0 1
0 0 1 0

where is small, but not small enough to be neglected, say
= 10−8. The exact eigenvalues

± (1 – 2/4)1/2 ± i /2

are close to a pair of double roots. The Wilkinson double shift
iteration uses one eigenvalue from each pair and does change
the matrix, but not enough to get rapid convergence.

The situation is not quite the same as the one which
motivated Wilkinson’s ad hoc shift. If the computations were
done exactly, or if we weren’t quite so careful about what we
regard as negligible, we would eventually get convergence. But
we are much better off if we modify the algorithm in a way
suggested by Prof. Jim Demmel of U. C. Berkeley. The idea is
to introduce a new, ad hoc shift if Wilkinson’s various shifts
fail to get convergence. For this example, if we take a double
shift based on repeating one of the eigenvalues of the lower
2-by-2 blocks, we get immediate satisfaction.

Our second case of QR failure, supplied by Prof. Alan
Edelman of MIT, involves the SVD algorithm and a portion
of the Fourier matrix. For example, take the upper left quarter
of the Fourier matrix of order 144.

n = 144
F = fft(eye(n,n));
F = F(1:n/2,1:n/2)
s = svd(F)
semilogy(s,'.')

All the elements of F are complex numbers of modulus one.
You can see from the graph that about half the singular values
of F are equal to √n. (Edelman can explain why that happens.)
The other half should decay rapidly toward zero, except that
roundoff error intervenes. The computed values of the last
dozen or so singular values do not show the continued decay
that we expect. This is OK; these tiny singular values were
destined to inaccuracy by the finite precision of the original
matrix elements. The difficulty is that we worked harder than
we should have to compute those small values. For some
other values of n, the svd calculation fails to converge.

The SVD variant of the QR algorithm is preceded by a
reduction to a bidiagonal form which preserves the singular
values. For these Fourier matrices, the trailing portion of the
two nonzero diagonals consists entirely of elements that are on
the order of roundoff error in the original matrix elements, and
that are not accurately determined by the original elements.
Nevertheless, the current implementation of the bidiagonal QR
iteration tries to accurately diagonalize the entire matrix. In
effect, it tries to carry out an unshifted iteration on a portion of
the matrix that has lost all significant figures. Convergence is
chaotic and, in some cases, the iteration limit is reached. We
plan to add a test that will avoid this behavior, but that will not
jeopardize accuracy for matrices where the bidiagonal form
retains accurate elements. ■

Cleve Moler is chair-
man and co-founder
of The MathWorks.
His e-mail address is
m o l e r @ m a t h w o r k s . c o m .

