
LISTA 1 – MS993 / MT404 – 2S2016

O conjunto de exercícios listados a seguir constitui uma síntese de elementos básicos de Álgebra Linear
que será usado durante este curso MS933/MT404 de Álgebra Linear Numérica. Esse material também
será útil para o desenvolvimento dos projetos, demais listas e para a prova escrita. Alguns itens, como a
decomposição  Schur,  pode não ter  sido discutido  (ou apenas  brevemente)  em um curso básico de
Álgebra Linear. Os tópicos abordados na lista serão revisitados ao longo do curso, quando necessário,
como por exemplo, Subespaços fundamentais de Matrizes, Normas de Vetores e Matrizes, Matrizes
ortonormais, Valores próprios e Matrizes especiais (e.g., matrizes definidas-positivas e simétricas).

Nesse contexto, esta lista 1 está sendo incluída também com a finalidade de dar um contexto para os
exercícios,  ou  seja,  para  introduzir/revisitar  notação,  para  fornecer  uma  breve  revisão  da  teoria
necessária e uma motivação para estudos teóricos via prática de exercícios representativos.

Como já mencionado, o curso MS993 / MT404 tem como objetivo primário o de fornecer uma visão
teórica e  com uma ênfase no desenvolvimento de habilidades práticas  computacionais  de métodos
numéricos aplicados para resolver problemas de álgebra linear numérica em grande escala. De todo
modo, os exercícios são incluídos por uma das seguintes razões:

• Permitir uma prática sobre aspectos teóricos de tópicos do curso.

• Ampliar o conhecimento sobre livros de Álgebra Linear Numérica.

• Estabelecer e fixar notação tipicamente encontrada nos livros de Álgebra Linear Numérica.

• Ampliar assuntos discutidos durante as aulas.

• Ganhar alguma familiaridade com o Matlab (mas qualquer outra linguagem pode ser usada).

• Fornecer mais detalhes sobre resultados discutidos.

• Mais detalhes e observações sobre a conexão entre os aspectos teóricos e computacionais.

• Composição da nota final.

O texto não tem a finalidade de ser uma introdução fácil à teoria e os aspectos computacionais para
MS993/MT404. Para este fim teremos aulas para introdução e discussão dos conceitos pertinentes,
além de apontamentos para motivação do assunto e para auxuliar na fundamentação da teoria. Os livros
textos servirão sempre como uma fonte importante para fixação de toda a teoria matemática subjacente.

Atenção: Nessa lista alguns teoremas são apresentados sem demonstração. Assim, pede-se que, além
de fazer todos os exercícios propostos, que seja também incluindo a prova correspondente para cada
um desses teoremas que foram apenas enunciados.



Lecture 0 – Preliminaries

Scalars in C and R are denoted by lower Greek letters, as λ.
High dimensional vectors and matrices are denoted by bold face letters, lower case letters

are used for vectors and capitals for matrices. If, for instance, n is large (high), then x,y, . . . are
vectors in C

n (or R
n) and A,V, . . . are n× k matrices. Low dimensional vectors and matrices

are denoted by standard letters: x, y, . . . or ~x, ~y, . . . are k-vectors for small (low) k, A, S, . . . are
k× ℓ matrices, with ℓ small as well. In many of our applications, n ∈ N will be large, and k ∈ N

will be modest.1

Spaces are denoted with calligraphic capitals, as V .
We view an n-vector as a column vector, that is, as an n × 1 matrix. Our notation is

column vector oriented, that is, we denote row vectors (1×n matrices) as x∗, with x a column
vector.

Let A = (Aij) be an n × k matrix: A = (Aij) indicates that Aij is the (i, j)-entry of
A. With A = [a1,a2, . . . ,ak] or A = [a1 a2 . . . ak] we settle the notation for the columns of
A: the jth column equals aj . The absolute value and the complex conjugate are entry-wise
operations: |A| ≡ (|Aij |) and Ā ≡ (Āij). The transpose AT of the matrix A is the k × n
matrix with (i, j)-entry Aji: AT ≡ (Aji). AH is the adjoint or Hermitian conjugate of A:
AH ≡ ĀT. We will also use the notation A∗ for AH: A∗ = AH.2

We follow Matlab’s notation to describe matrices that are formed from other matrices:
consider an n × k matrix A = (Aij) and an m × l matrix B = (Bij). If m = n, then [A,B]
is the n × (k + l) matrix with (i, j) entry equal to Ai,j if j ≤ k and Bi,j−k if j > k: A is
extended with the columns from B. If k = l, then [A;B] is the (n + m)× k matrix with (i, j)
entry equal to Ai,j if i ≤ n and Bi−n,j if i > n: A is extended with the rows from B. Note
that [A;B] = [AT BT]T. If I = (i1, i2, . . . , ip) is a sequence of numbers ir ∈ {1, 2, . . . , n} and
J = (j1, j2, . . . , jq) is a sequence of numbers js in {1, 2, . . . , k}, then A(I, J) is the p× q matrix
with (r, s) entry equal to Air ,js

. Note that entries of A can be used more than once.

Below, we collect a number of standard results in Linear Algebra that will be frequently
used. The statements are left to the reader as an exercise.

A Spaces

Let V and W be linear subspace of C
n.

Then V +W is the subspace V +W ≡ {x + y x ∈ V ,y ∈ W}.
We put V ⊕W for the subspace V +W if V ∩W = {0}.

Exercise 0.1.

(a) V +W is a linear subspace.

1We distinguish high and low dimensionality to indicate differences in efficiency. A dimension k is
‘low’, if the solution of k-dimensional problems of a type that we want to solve numerically can be
computed in a split second with a computer and standard software. The dimension is ‘high’ if more
computational time is required or non-standard software has to be used. For linear systems, that is,

solve Ax = b for x, where A is a given k × k matrix and b is a given k-vector,

k small is like k ≤ 1000. For eigenvalue problems, that is,
find a non-trivial vector x and a scalar λ such that Ax = λx, where A a given k × k matrix,

k small is like k ≤ 100. From a pure mathematical point of view ‘low’ and ‘high’ dimensionality does
not have a meaning (in pure mathematics, ‘low’ would mean finite, while ‘high’ would be infinitely
dimensional. The problems that we will solve are all finite dimensional). In a mathematical statement
the difference between low and high dimensionality does not play a role. But in its interpretation for
practical use, it does.

2Formally, A∗ is defined with respect to inner products: if (·, ·)X and (·, ·)Y are inner product on
a linear space X and on a linear space Y, respectively, and A linearly maps X to Y , then A∗ is the
linear map from Y to X for which (Ax,y)Y = (x,A∗y)X for all x ∈ X and y ∈ Y. With respect
to the standard inner product (x, y) ≡ yHx on X ≡ C

k and on (x,y) ≡ yHx on Y ≡ C
n, we have

that A∗ = AH. With A∗, we will (implicitly) refer to standard inner product, unless explicitly stated
otherwise.
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(b) Suppose V ∩W = {0}. Then dim(V) + dim(W) = dim(V ⊕W)

(c) Suppose V ∩W = {0}. Then V ⊕W = C
n if and only if dim(V) + dim(W) = n.

(d) If dim(V) + dim(W) > n, then V ∩W 6= {0}.

If x and y are n-vectors (i.e., in C
n), then we put ‖x‖2 ≡

√
x∗x and y ⊥ x if y∗x = 0.

Exercise 0.2.

(a) The map (x,y) y∗x from C
n × C

n to C defines an inner product on C
n:

1) x∗x ≥ 0 and x∗x = 0 if and only if x = 0 (x ∈ C
n),

2) x y∗x is a linear map from C
n to C for all y ∈ C

n,
3) (y∗x)¯ = x∗y (x,y ∈ C

n).

(b) The map x ‖x‖2 from C
n to C defines an norm on C

n:
1) ‖x‖2 ≥ 0 and ‖x‖2 = 0 if and only if x = 0 (x ∈ C

n),
2) ‖αx‖2 = |α| ‖x‖2 (α ∈ C,x ∈ C

n),
3) ‖x + y‖2 ≤ ‖x‖2 + ‖y‖2 (x,y ∈ C

n).

(c) |y∗x| ≤ ‖x‖2 ‖y‖2 (x,y ∈ C
n) (Cauchy–Schwartz).

(d) If x ⊥ y then ‖x + y‖22 = ‖x‖22 + ‖y‖22 (x,y ∈ C
n) (Pythagoras).

We put

v ⊥ W if v ⊥ w (w ∈ W), V ⊥ W if v ⊥W (v ∈ V), and V⊥ ≡ {y ∈ C
n y ⊥ V}.

Let V = [v1, . . . ,vk] be a n× k matrix with columns v1, . . . ,vk. Then

span(V) ≡ span(v1, . . . ,vk) ≡





k∑

j=1

αjvj αj ∈ C



 .

We put x ⊥ V if x ⊥ span(V). Moreover, V⊥ ≡ {y ∈ C
n y ⊥ V}.

Exercise 0.3.

(a) dim(V) = n− dim(V⊥).

(b) x ⊥ V ⇔ x ⊥ vi for all i = 1, . . . , k ⇔ V∗x = 0.

(c) dim(span(V)) ≤ k.

The angle ∠(x,y) between two non-trivial n-vectors x and y is in [0, 1

2
π] such that

cos∠(x,y) =
|y∗x|

‖y‖2 ‖x‖2
.

B Matrices.

Let A = (aij) be an n× k matrix. We will view the matrix A as map from C
k to C

n defined

by the matrix-vector multiplication: x Ax (x ∈ C
k).

The column (row) rank of A is the maximum number of linearly independent columns (rows)
of the matrix A.

Theorem 0.1 The row rank of a matrix is equal to the column rank.

The above theorem allows us to talk about the rank of a matrix.

The range R(A) of A is {Ay y ∈ C
k}.

The null space N (A) or kernel of A is {x ∈ C
k Ax = 0}.

Exercise 0.4.

(a) R(A) = span(A).
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(b) the rank of A equals dim(R(A)).

(c) N (A) = R(A∗)⊥.

(d) dim(R(A)) = n− dim(N (A)).

Exercise 0.5.

(a) A : C
k → C

n is a linear map ⇔
for some n× k matrix A we have that A(x) = Ax for all x ∈ C

k.

(b) Let v1, . . . , vk be a basis of C
k and w1, . . . ,wn a basis of C

n. Let V ≡ [v1, . . . , vk] and
W ≡ [w1, . . . ,wn]. Then V and W are non-singular and W−1AV is the matrix of the map
x Ax from C

k to C
n with respect to the V and W basis.

Exercise 0.6. Let A = [a1, . . . ,ak] be an n × k matrix and B = [b1, . . . ,bk] and m × k
matrix. Let D ≡ diag(λ1, . . . , λk) be an k × k diagonal matrix with diagonal entries λj .

(a) A∗∗ = A.

(b) (BA∗)∗ = AB∗.

(c) AB∗ =
∑k

j=1
ajb

∗
j .

(d) ajb
∗
j are n×m rank one matrices.

(e) ADB∗ =
∑k

j=1
λjajb

∗
j .

Exercise 0.7. Let the n× n matrix U = (uij) be upper triangular, i.e., uij = 0 if i > j.

(a) U−1 is upper triangular and U∗ is lower triangular.

(b) If in addition the diagonal of U is the identity matrix, then the diagonal of U−1 is the
identity matrix as well.

(c) The product of upper triangular matrices is upper triangular as well.

If A is an n× n matrix, then the determinant det(A) is the volume of the ‘block’

{Ax x = (x1, . . . , xn)T, xi ∈ [0, 1]}. The trace trace(A) of A is the sum of its diagonal entries.

Theorem 0.2 If A is n× k and B is k × n, then trace(AB) = trace(BA).
If n = k, then det(AB) = det(A)det(B).

Exercise 0.8. Let A be an n× n matrix.

(a) Prove that the following properties are equivalent:

• det(A) 6= 0.

• A had full rank.

• A has a trivial null space: N (A) = {0}.
• The range of A is C

n: R(A) = C
n.

• A : C
n → C

n is invertible.

• There is an n× n matrix, denoted by A−1, for which A−1A = I.

A is non-singular if A has one of these properties. A−1 is the inverse of A.

(b) AA−1 = I. If B is n× n and BA = I or AB = I, then B = A−1.

(c) With Cramer’s rule, the inverse of a matrix can be expressed in terms of determinants of
submatrices. However, this approach for finding inverses is extremely inefficient and, except for
very low dimensions, it is never used in practice. Cramer’s rule for n = 2:

[
α β

γ δ

]−1

=
1

αδ − βγ

[
δ −β

−γ α

]
.

Exercise 0.9.
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A matrix Q is unitary of Q is square and orthonormal.

Exercise 0.12. Proof of Theorem 0.3. Let A = [a1, . . . ,ak] be an n× k matrix.

(a) Suppose q1, . . . ,qℓ is an orthonormal system, ℓ < k. For aj ∈ C
n, consider

rij = q∗
i aj (i = 1, . . . , ℓ), v = aj −

ℓ∑

j=1

qi rij , (0.1)

and, if ‖v‖2 6= 0,

rℓ+1,j = ‖v‖2, qℓ+1 ≡
v

rℓ+1,j

. (0.2)

Then, qℓ+1 ⊥ span(q1, . . . ,qℓ), and

aj =
ℓ+1∑

i=1

qi rij = Qℓ+1 rj ,

where Qℓ+1 = [q1, . . . ,qℓ+1 ] and rj ∈ C
ℓ+1 has ith entry rij as described above in (0.1) and

(0.2). In particular, Qℓ+1 is orthonormal and aj ∈ span(Qℓ+1).
In (0.1), the vector aj is orthogonalised against q1, . . . ,qℓ, while in (0.2) the vector v is

normalised.

(b) Show that (0.1) can be expressed as

v = aj −Qℓ(Q
∗
ℓaj), (0.3)

(c) If ‖v‖2 = 0, then a = Qℓr
′
j , where r′j is the ℓ upper part of rj .

(d) Prove Theorem 0.3: there is an n × ℓ orthonormal matrix Q, with ℓ ≤ min(k, n), and an
ℓ× k upper triangular matrix R such that

A = QR. (0.4)

(e) There is an n× n unitary matrix Q̃ and an n× k upper triangular matrix R̃ such that

A = Q̃R̃ (0.5)

(f) Relate Q and Q̃ and R and R̃.

The relation in (0.5) is the QR-decomposition or QR-factorisation of A. The relation
in (0.4) is the economical form of the QR-decomposition.

Theorem 0.4 Let V be a k-dimensional linear subspace of C
n. Let b ∈ C

n.
For a b0 ∈ V, the following two properties are equivalent:

(i) ‖b− b0‖2 ≤ ‖b− v‖2 for all v ∈ V .

(ii) b− b0 ⊥ V .

There is exactly one b0 ∈ V with one of these equivalent properties.

Exercise 0.13. Let V be a k-dimensional linear subspace of C
n. Let b ∈ C

n.

(a) There is an n× k orthonormal matrix V such that V = span (V).

(b) We have that b0 ≡ V(V∗b) ∈ V and b− b0 ⊥ V.

(c) If x = y + z for some y ∈ V and z ⊥ V , then y = x0 ≡ V(V∗x).

(d) C
n = V ⊕ V⊥.

(e) Prove Theorem 0.4.
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Exercise 0.14. Let A be an n× k matrix.

(a) R(A) = {Ax x ⊥ N (A)}.
(b) For an x ∈ C

k, let x1 ∈ C
k be such that x1 ⊥ N (A) and x− x1 ∈ N (A).

There is precisely one k × n matrix, denoted by A†, for which

A†y = 0 if y ⊥ R(A) and A†(Ax) = x1 (x ∈ C
k).

A† is the inverse of A as a map from N (A)⊥ to R(A) with null-space equal to R(A)⊥.
A† is the Moore–Penrose pseudo inverse or generalised inverse of A.

(c) The following four properties do not involve the notion of orthogonality. They characterise
the Moore–Penrose pseudo inverse.

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A.

D Eigenvalues.

Let A be an n× n matrix. Let λ ∈ C.
If x ∈ C

n, then (λ,x) is an eigenpair of the matrix A if Ax = λx and x 6= 0, λ is an
eigenvalue and x is an eigenvector associated to the eigenvalue λ.

V(λ) ≡ {x ∈ C
n Ax = λx} is the eigenspace associated to λ. The dimension of V(λ) is the

geometric multiplicity of the eigenvalue λ.
The characteristic polynomial PA is defined by

PA(ζ) ≡ det(ζI −A) (ζ ∈ C).

Exercise 0.15.

(a) λ ∈ C is an eigenvalue of A if and only if λ is a root of PA, i.e., PA(λ) = 0.

(b) If PA has k mutually different complex roots, then A has at least k eigenvalues.

(c) If A = (aij) is real (i.e., aij ∈ R for all i, j), and (λ,x) is an eigenpair of A, then (λ̄, x̄) is
an eigenpair of A.

The algebraic multiplicity of the eigenvalue λ is the multiplicity of the root λ of PA.
λ is a simple eigenvalue of A if its algebraic multiplicity is one. An eigenvalue λ of A is
semi-simple if the algebraic multiplicity equals the geometric multiplicity. The matrix A is
semi-simple if all of its eigenvalues are semi-simple. If all eigenvalues are simple, then A is
said to be simple.

Exercise 0.16.

(a) Any simple eigenvalue is semi-simple.

(b) Counted according to algebraic multiplicity, A has n eigenvalues.

(c) Give an example of a 2 × 2 matrix with an eigenvalue with algebraic multiplicity 2 and
geometric multiplicity 1.

(d) For any n × n matrix B, the two matrices AB and BA have the same eigenvalues with
equal multiplicity (algebraic, as well as geometric).
The same statement also holds for the non-zero eigenvalues in case A is n× k and B is k × n.

(e) Eigenvalues do not depend on the basis, i.e., if T is a non-singular n × n matrix, then A
and T−1AT have the same eigenvalues with equal multiplicity (algebraic, as well as geometric).

(f) Any non-trivial linear subspace V of C
n that is invariant under multiplication by A

(i.e., Ax ∈ V for all x ∈ V) contains at least one eigenvector of A.

(g) V(λ) ⊂ W(λ) ≡ {w ∈ C
n (A− λI)kw = 0 for some k ∈ N}

(h) Both V(λ) and W(λ) are linear subspaces of C
n invariant under multiplication by A.
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(i) The dimension of W(λ) equals the algebraic multiplicity of the eigenvalue λ.

(j) To simplify notation, assume 0 is an eigenvalue of A (otherwise, replace A by A− λI).
Let x be a non-trivial vector in W(0). Let k ∈ N be the smallest number for which Akx = 0.
Assume αmAmx + . . . + α1Ax + α0x = 0 for some αj ∈ C. Prove that α0 = . . . = αk−1 = 0.
Prove that x ∈ W(µ) ⇔ µ = 0. In particular, W(λ) ∩W(µ) = {0} if λ 6= µ.

(k) C
n =

⊕W(λ), where we sum over all different eigenvalues λ of A.

If Q is n× k orthonormal with k ≤ n and S is k × k upper triangular such that

AQ = QS, (0.6)

then (0.6) is a partial Schur decomposition (or partial Schur form) of A (of order k). If
k = n, then (0.6) is a Schur decomposition of Schur form.

Theorem 0.5 A has a Schur decomposition.

Proof. Apply induction to k to prove the theorem:
There is a normalised eigenvector q1 of A. Note that Aq1 = q1λ1 is a partial Schur

decomposition of order 1.
Suppose we have a partial Schur decomposition AQk = QkSk of order k. Note that

Q⊥
k is a linear subspace of C

n that is invariant under multiplication by the deflated matrix

Ã ≡ (I − QkQ
∗
k)A(I − QkQ

∗
k). Therefore (see (f) of Exercise 0.16), Ã has a normalised

eigenvector in Q⊥
k , say qk+1 with eigenvalue, say λk+1. Expanding Qk to Qk+1 and Sk to

Sk+1,

Qk+1 ≡ [Qk,qk+1] and Sk+1 ≡
[

Sk Q∗
kAqk+1

~0∗ λk+1

]
,

leads to the partial Schur decomposition AQk+1 = Qk+1Sk+1 of order k + 1.

Exercise 0.17. Suppose we have a partial Schur decomposition (0.6).

(a) The diagonal entries of S are eigenvalues of S and of A.

(b) If Sy = λy, then (λ,Qy) is an eigenpair of A

(c) The computation of y with Sy = λy requires the solution of an upper triangular system.

Without proof, we mention:

Theorem 0.6 There is a non-singular n × n matrix T such that AT = TJ, where J is a
matrix on Jordan normal form, i.e., J is a block diagonal matrix with Jordan blocks on the

diagonal. A Jordan block is a square matrix of the form Jλ =




λ 1

λ
. . .

. . . 1

λ



.

A is diagonalizable if J is diagonal (i.e., all Jordan blocks in J are 1× 1).

Theorem 0.7 The following properties are equivalent voor any n× n matrix A:
1) A is semi-simple,
2) A is diagonalizable,
3) there is a basis of eigenvector of A, i.e., there is a basis v1, . . . ,vn of C

n such that vi is
an eigenvector of A for all i.
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Exercise 0.18. Proof of Theorem 0.7.

(a) If an eigenvalue λ of A shows up in exactly p Jordan blocks in the Jordan normal form,
then p is the geometric multiplicity of λ.

(b) Suppose J is on Jordan normal form. Describe V(λ) and W(λ) in terms of the standard
basis vectors ei.

(c) A is semi-simple ⇔ A is diagonalizable.

(d) Prove Theorem 0.7.

Theorem 0.8 (Cayley-Hamilton)
Let PA(ζ) = ζn + αn−1ζ

n−1 + . . . + α0 (ζ ∈ C) be the characteristic polynomial of A. Then

PA(A) ≡ An + αn−1A
n−1 + . . . + α0I = 0. (0.7)

The minimal polynomial QA of A is the monic non-trivial polynomial Q of minimal degree
for which Q(A) = 0. Q is monic if Q(ζ) = ζk + terms of degree < k. The minimal polynomial
factorises PA, i.e., PA = QAR for some polynomial R (R might be constant 1).

Exercise 0.19. Proof of Theorem 0.8. Let λ1, . . . , λn be the eigenvalues of A counted
according to algebraic multiplicity.

(a) If T is a non-singular n×n matrix and P is a polynomial, then P (T−1AT) = T−1P (A)T.

(b) Let p be a polynomial. Show that

p(J) =




p(λ) p′(λ) p′′(λ)

0 p(λ) p′(λ)

0 0 p(λ)


 if J =




λ 1 0

0 λ 1

0 0 λ


 . (0.8)

Generalise this result to Jordan blocks of higher dimension.

(c) If Jλ is a Jordan block of size ℓ × ℓ, then P (Jλ) = 0 for any polynomial P of the form
P (ζ) = (λ− ζ)ℓQ(ζ) (ζ ∈ C), with Q a polynomial.

(d) Use Theorem 0.6 to prove (0.7).

(e) Show that the minimal polynomial factorises the characteristic polynomial.

(f) Show that the degree of the minimal polynomial is at least equal to the number of different
eigenvalues of A, with equality if and only if A is semi-simple. The degree of the minimal
polynomial is also called the degree of A.

Exercise 0.20. Consider the situation of Theorem 0.8.

(a) Prove that

α0 = det(A) =

n∏

j=1

λj , αn−1 = trace(A) =

n∑

j=1

λj .

(b) Suppose A is non-singular. Note that then α0 6= 0. Consider the linear system Ax = b.
Show that

x = q(A)b for some polynomial q of degree < n.

Actually, one can take q(ζ) = − 1

α0

(ζn−1 + αn−1ζ
n−2 + . . . + α1). Give also an expression for q

in terms of the minimal polynomial.

Exercise 0.21. Let B be an n× n matrix that commutes with A, i.e., BA = AB.

(a) Both space V(λ) and W(λ) (w.r.t. A) are invariant under multiplication by B.

(b) The space V(λ) contains an eigenvector of B.

If y ∈ C
n,y 6= 0 and y∗A = µy∗, then y is a left eigenvector of A associated to the

(left) eigenvalue µ. If we discuss left eigenvectors, then we refer to non-trivial vectors x for
which Ax = λx as right eigenvectors. Left and right eigenvectors with different eigenvalues
are mutual orthogonal (for a proof, see Exercise 0.22):
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Theorem 0.9 Let A be an n× n matrix.
1) λ ∈ C is a left eigenvalue of A if and only if λ is a right eigenvalue of A.
2) If x is a right eigenvector with eigenvalue λ and y be a left eigenvector with eigenvalue µ 6= λ,
then y ⊥ x.

Corollary 0.10 Let A be an n× n matrix.
Suppose u is in the span of right eigenvectors xi of A with eigenvalue λi: u =

∑
αixi.

If λi is simple and yi is the left eigenvector of A associated with λi scaled such that y∗x = 1,
then αi = y∗

i u.

Exercise 0.22. Let y be a left eigenvector with eigenvalue µ.

(a) For λ ∈ C , λ left eigenvalue ⇔ PA(λ) = 0 ⇔ λ is a right eigenvalue.

(b) If x is a right eigenvector with eigenvalue λ and λ 6= µ, then y ⊥ x.

(c) If x is a right eigenvector with eigenvalue µ and there is an n-vector z such that Az = µz+x
(x is associated with a non-trivial Jordan block Jµ), then y ⊥ x.

(d) The subspace y⊥ is invariant under multiplication by A.

(e) If µ is simple, then y⊥ =
⊕W(λ), where we sum over all eigenvalues λ of A, λ 6= µ.

(f) {y (A∗ − µ̄I)ℓy = 0 for some ℓ ∈ N} ⊥ W(λ) if λ 6= µ.

(g) Give an example of a matrix A with left and right eigenvector y and x, respectively, both
associated to the same eigenvalue λ such that y ⊥ x. (Hint: you can find a 2 × 2 matrix A
with λ = 0 with this property.)

The spectrum Λ(A) of A is the set of all eigenvalues of A.
The spectral radius ρ(A) of A is the absolute largest eigenvalue of A:

ρ(A) = {|λ| λ ∈ Λ(A)}.

For complex numbers x with |x| < 1 we have that xk → 0 (k →∞) and (geometric series)

(1− x)−1 = 1 + x + x2 + x3 + . . . .

For matrices A, ρ(A) < 1 implies Ak → 0 (k →∞) and (Neumann series)

(I−A)−1 = I + A + A2 + A3 + . . . . (0.9)

Theorem 0.11
1) Akx→ 0 (k → 0) for all x ∈ C

n ⇔ ρ(A) < 1.
2) If 1 6∈ Λ(A), then I−A is non-singular.
3) If ρ(A) < 1, then I + A + . . . + Ak converges to (I−A)−1.

Exercise 0.23. Proof of Theorem 0.11.

(a) Prove the first statement of the theorem in case A is a Jordan block Jλ. (Hint: Jk
λ is upper

triangular with entries λn, nλn−1, n(n − 1)λn−2, . . . , on the main diagonal, first co-diagonal,
second co-diagonal, . . . , respectively, see (0.8))

(b) Prove the first statement of the theorem for the general case.

(c) Prove the third statement. (Hint: check that (I−A)(I + A + . . . + Ak) = I−Ak+1.)

An eigenvalue λ of A is dominant if it is simple and |λ| > |λj | for all other eigenvalues λj

of A. An eigenvector associated to a dominant eigenvalue is said to be dominant.
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Theorem 0.12 (Perron–Frobenius) Let A be such that A = |A|. Then ρ(A) ∈ Λ(A).
If, in addition, A is irreducible and a-periodic,3 then ρ(A) is a dominant eigenvalue of A.

A characteristic polynomial is monic: the leading coefficient is one. Conversely, any monic
polynomial is a characteristic polynomial of some suitable matrix. This statement is obvious if
the zeros of the polynomial are available: then, we can take the diagonal matrix with the zeros
on the diagonal. However, for a suitable matrix, we do not need the zeros.

Let p(ζ) = ζn− (αn−1ζ
n−1 + . . .+α1ζ +α0) (ζ ∈ C) be a polynomial (with αj ∈ C). Then

H




λn−1

λn−2

...

...

1




= λ




λn−1

λn−2

...

...

1




, where H ≡




αn−1 αn−2 . . . α1 α0

1 0 . . . 0 0

0 1
. . .

...
. . .

. . .
. . .

...

1 0




, (0.10)

for all zeros λ of p. In particular, the zeros of p are eigenvalues of H and p is the characteristic
polynomial of H. H is the companion matrix of p. Modern software packages as Mat-

lab compute zeros of polynomials, by forming the companion matrix and applying modern
numerical techniques for computing eigenvalues of matrices.

Exercise 0.24. Let p a polynomial with companion matrix H (cf., (0.10)).
Let x(ζ) be the vector with coordinates ζn−1, ζn−2, . . . , ζ, 1 (ζ ∈ C).

(a) Prove that Hx(λ) = λx(λ) ⇔ p(λ) = 0.

(b) Prove that p is the characteristic polynomial of H in case all zeros of p are mutually
different.

(c) Suppose p(λ) = p′(λ) = 0. Show that Hx′(λ) = λx′(λ) + x and conclude that λ is an
eigenvalue of H of algebraic multiplicity at least 2. and that the associated Jordan block Jλ is
at least 2× 2.

(d) Prove that p is the characteristic polynomial of H regardless the multiplicity of the zeros.

E Special matrices.

A is an n× n matrix.
A is Hermitian (or self adjoined) if A∗ = A. A is symmetric if AT = A.

Note hat for a real matrix A (i.e., all matrix entries are in R), A is symmetric if and only of
A is Hermitian. Often, if a matrix is said to be symmetric, it is implicitly assumed that the
matrix is real. If that is not case, the matrix is referred to as a complex symmetric matrix, i.e.,
the possibility that matrix entries are non-real is explicitly mentioned.

A matrix A is anti-Hermitian if A∗ = −A. Sometimes it is convenient to split a (general
square) matrix A into a Hermitian and an anti-Hermitian part:

A = Ah + Aa, with Aa ≡ 1

2
(A + A∗) and Aa ≡

1

2
(A−A∗) (0.11)

(see Exercise 0.25), as a complex number α can be split onto a real and an imaginary part:
α = αr + iαi with αr = Re(α) and αi = Im(α). Here i is the complex number

√
−1.

Exercise 0.25.

(a) If A and H are Hermitian and α, β ∈ R, then αA + βH is Hermitian.

(b) If V is an n× k matrix and A is Hermitian, then V∗AV is Hermitian.

3The directed graph associated to the matrix A consists of vertices 1, . . . , n and there is an edge
from i to j iff Aij 6= 0. A matrix is irreducible if for all i, j there is a path in its graph from vertex i

to vertex j. The matrix is a-periodic if the greatest common divisor of the length of circular paths is 1.
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(c) If A is anti-Hermitian, then iA is Hermitian. Here i =
√
−1.

(d) Any square matrix A can be written as in (0.11) with Ah Hermitian and Aa anti-Hermitian.

(e) A is Hermitian ⇔ x∗Ay ∈ R for all x,y ∈ C
n.

(f) If x∗Ax ∈ R for all x ∈ C
n ⇔ x∗Aax = 0 for all x ∈ C

n.

(g) If x∗Ax ∈ R for all x ∈ C
n ⇔ A = Ah is Hermitian.

(h) If A = QSQ∗ is the Schur decomposition of an Hermitian matrix A, then S is a real
diagonal. In particular, an Hermitian matrix A is diagonalizable, all eigenvalues are real and
A has an orthonormal basis of eigenvectors, i.e., there is an orthonormal basis of C

n such that
all basis vectors are eigenvectors of V.

A is a normal matrix if AA∗ = A∗A.

Theorem 0.13 Hermitian and anti-Hermitean matrices are normal.
If A is normal, then a vector is a right eigenvector of A if and only if it is a left eigenvector.
The following properties are equivalent voor a square matrix A:
1) A is normal.
2) AaAh = AhAa.
3) There is an orthonormal basis of eigenvector of A.
4) A∗ = p(A) for any polynomial p for which p(λ) = λ for all eigenvalues λ of A.
5) There is a polynomial p for which A∗ = p(A).

Exercise 0.26. Proof of Theorem 0.13.

(a) Prove the first claim of the theorem.

(b) Subsequentially prove the following impications (see the theorem)
1) ⇒ 2), 2) ⇒ 3) (Hint: use (b) of Exercise 0.21),
3) ⇒ 4), 4) ⇒ 5) (Hint: use Lagrange interpolation), 5) ⇒ 1).

(c) Prove that left and right eigenvectors coincide in case A is normal. Does the converse hold?

Assume in the remaining of this exercise that A is normal

(d) Prove that there is a polynomial p as in 5) with degree ≤ #Λ(A), i.e., the number of
different eigenvalues of A. In particular, the degree of the polynomial p is ≤ the degree of the
minimal polynomial of A.

(e) If A∗ = p(A) then p◦p(A) = A, in particular the minimal polynomial of A is a polynomial
factor of the polynomial λ− p(p(λ)).

A is (semi-) positive definite if x∗Ax > 0 (x∗Ax ≥ 0, respectively) for all x ∈ C
n,x 6= 0.

Exercise 0.27.

(a) A is positive definite ⇔ A is Hermitian and λ > 0 for all eigenvalues λ of A.
(Here, you can use that A = 0 if x∗Ax = 0 for all x ∈ C

n. For a proof, see Exercise 1.9(a).)

(b) A is semi positive definite ⇔ A is Hermitian and λ ≥ 0 for all eigenvalues λ of A.

(c) A is positive definite ⇔ A = MM∗ for some non-singular n× n matrix M.

(d) A is positive definite ⇔ A = LL∗ for some non-singular n×n lower triangular matrix L.
(Hint: apply (0.5) to M∗).

(e) A is semi positive definite ⇔ A = MM∗ for some n× n matrix M.

In the above statements, it is essential that the positive definiteness is with respect to
complex data: if A is real and xTAx > 0 for all x ∈ R

n, x 6= 0, then, we can not conclude that
A is symmetric.

(f) Give an example of a non-symmetric 2×2 real matrix A for which xTAx > 0 for all x ∈ R
2,

x 6= 0.
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F Quiz

Exercise 0.28. Let

A =




0 1 0

−1 0 1

0 −1 0


 .

(a) Wat is the Range of A?

(b) What is the Null space of A?

(c) What is the rank of A?

(d) What are the eigenvalues of A?
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