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O conjunto de exercicios listados a seguir constitui uma sintese de elementos basicos de Algebra Linear
que sera usado durante este curso MS933/MT404 de Algebra Linear Numérica. Esse material também
sera util para o desenvolvimento dos projetos, demais listas e para a prova escrita. Alguns itens, como a
decomposi¢dao Schur, pode ndo ter sido discutido (ou apenas brevemente) em um curso basico de
Algebra Linear. Os t6picos abordados na lista serdo revisitados ao longo do curso, quando necessario,
como por exemplo, Subespacos fundamentais de Matrizes, Normas de Vetores e Matrizes, Matrizes
ortonormais, Valores proprios e Matrizes especiais (e.g., matrizes definidas-positivas e simétricas).

Nesse contexto, esta lista 1 estd sendo incluida também com a finalidade de dar um contexto para os
exercicios, ou seja, para introduzir/revisitar notacdao, para fornecer uma breve revisio da teoria
necessaria e uma motivagao para estudos teoricos via pratica de exercicios representativos.

Como ja mencionado, o curso MS993 / MT404 tem como objetivo primario o de fornecer uma visao
teérica e com uma énfase no desenvolvimento de habilidades praticas computacionais de métodos
numeéricos aplicados para resolver problemas de algebra linear numérica em grande escala. De todo
modo, os exercicios sdao incluidos por uma das seguintes razoes:

* Permitir uma pratica sobre aspectos tedricos de topicos do curso.

+  Ampliar o conhecimento sobre livros de Algebra Linear Numérica.

+ Estabelecer e fixar notacéo tipicamente encontrada nos livros de Algebra Linear Numérica.

* Ampliar assuntos discutidos durante as aulas.

* Ganhar alguma familiaridade com o Matlab (mas qualquer outra linguagem pode ser usada).

* Fornecer mais detalhes sobre resultados discutidos.

* Mais detalhes e observacGes sobre a conexdo entre 0s aspectos tedricos e computacionais.

* Composicao da nota final.
O texto nao tem a finalidade de ser uma introducao facil a teoria e os aspectos computacionais para
MS993/MT404. Para este fim teremos aulas para introducdo e discussdo dos conceitos pertinentes,

além de apontamentos para motivacao do assunto e para auxuliar na fundamentacao da teoria. Os livros
textos servirdo sempre como uma fonte importante para fixacao de toda a teoria matematica subjacente.

Atencao: Nessa lista alguns teoremas sdo apresentados sem demonstracao. Assim, pede-se que, além
de fazer todos os exercicios propostos, que seja também incluindo a prova correspondente para cada
um desses teoremas que foram apenas enunciados.



Lecture 0 — Preliminaries

Scalars in C and R are denoted by lower Greek letters, as A.
High dimensional vectors and matrices are denoted by bold face letters, lower case letters

are used for vectors and capitals for matrices. If, for instance, n is large (high), then x,y, ... are
vectors in C" (or R™) and A, V,... are n X k matrices. Low dimensional vectors and matrices
are denoted by standard letters: z,y,... or Z,7, ... are k-vectors for small (low) k, A, S, ... are

k x £ matrices, with £ small as well. In many of our applications, n € N will be large, and k € N
will be modest.!

Spaces are denoted with calligraphic capitals, as V.

We view an n-vector as a column vector, that is, as an n x 1 matrix. Our notation is
column vector oriented, that is, we denote row vectors (1 x n matrices) as x*, with x a column
vector.

Let A = (A4;;) be an n x k matrix: A = (4;;) indicates that A;; is the (7,j)-entry of
A. With A = [a;,a,...,a;] or A = [a; az ... a;]| we settle the notation for the columns of
A: the jth column equals a;. The absolute value and the complex conjugate are entry-wise
operations: |A| = (J]A;;|) and A = (A4;;). The transpose AT of the matrix A is the k x n
matrix with (¢, j)-entry Aj;: AT = (A;;). A" is the adjoint or Hermitian conjugate of A:
A" = AT. We will also use the notation A* for A": A* = A" 2

We follow MATLAB’s notation to describe matrices that are formed from other matrices:
consider an n x k matrix A = (4;;) and an m x [ matrix B = (B;;). If m = n, then [A, B]
is the n x (k + 1) matrix with (¢, j) entry equal to A;; if j < k and B, j_r if j > k: A 'is
extended with the columns from B. If k = [, then [A;B] is the (n +m) x k matrix with (4, )
entry equal to A; ; if i < n and B;_, ; if i > n: A is extended with the rows from B. Note
that [A;B] = [AT BT|". If I = (i1,42,...,4p) is a sequence of numbers i, € {1,2,...,n} and
J = (j1,J2,---,Jq) is a sequence of numbers js in {1,2,...,k}, then A(I,J) is the p x ¢ matrix
with (r, s) entry equal to A;, ;,. Note that entries of A can be used more than once.

Below, we collect a number of standard results in Linear Algebra that will be frequently
used. The statements are left to the reader as an exercise.

A Spaces

Let V and W be linear subspace of C".

Then V 4+ W is the subspace V+ W = {x—i—y‘xEV,yEW}.
We put V@ W for the subspace V +W if VNW = {0}.

Exercise 0.1.

(a) V+ W is a linear subspace.

!We distinguish high and low dimensionality to indicate differences in efficiency. A dimension k is
‘low’, if the solution of k-dimensional problems of a type that we want to solve numerically can be
computed in a split second with a computer and standard software. The dimension is ‘high’ if more
computational time is required or non-standard software has to be used. For linear systems, that is,

solve Ax = b for x, where A is a given k X k matriz and b is a given k-vector,
k small is like £ < 1000. For eigenvalue problems, that is,
find a non-trivial vector x and a scalar A such that Ax = Az, where A a given k X k matriz,

k small is like £ < 100. From a pure mathematical point of view ‘low’ and ‘high’ dimensionality does
not have a meaning (in pure mathematics, ‘low’ would mean finite, while ‘high’ would be infinitely
dimensional. The problems that we will solve are all finite dimensional). In a mathematical statement
the difference between low and high dimensionality does not play a role. But in its interpretation for
practical use, it does.

2Formally, A* is defined with respect to inner products: if (-,-)x and (-,-)y are inner product on
a linear space X and on a linear space ), respectively, and A linearly maps X to ), then A* is the
linear map from Y to X for which (Ax,y)y = (x,A"y)x for all x € X and y € ). With respect
to the standard inner product (z,y) = y 'z on X = C* and on (x,y) = y"x on Y = C", we have
that A* = A, With A*, we will (implicitly) refer to standard inner product, unless explicitly stated
otherwise.



(b) Suppose VNW = {0}. Then dim(V)+ dim(W) = dim(V & W)
(¢) Suppose VNW = {0}. Then V@& W = C" if and only if dim(V) + dim(W) = n.
(d) If dim(V) + dim(W) > n, then VN W # {0}.

If x and y are n-vectors (i.e., in C"), then we put ||x||2 = vx*x and y L x if y*x = 0.

Exercise 0.2.
(a) The map (x,y) ~» y*x from C" x C" to C defines an inner product on C":
1) x*x >0 and x*x =0 if and only if x =0 (x e C"),
2) x ~» y*x is a linear map from C" to C for all y € C",
3)(y'x) =xy (xyeC).
(b) The map x ~ ||x]|2 from C" to C defines an norm on C™:
1) [|x]]2 > 0 and ||x||2 = 0 if and only if x = 0 (x e C"),
2) lax|lz = [l [Ix[l~ (a € C,xeC"),
3) Ix+ylls <lxll2+llyll (xy €C").
() ly* x| < |Ixll2 |yl (x,y € C") (Cauchy—Schwartz).
(@) Ttx Ly then [x+yl3 = |xI3+ |y}  (xy € C") (Pythagoras).

We put
VIWifviw (weW), VIWIifvLIW (veV), and Vi ={yeC'|y LV}
Let V =[vy,...,vg] be an x k matrix with columns vy, ..., v. Then

k
span(V) = span(vy,...,vg) = Zajvj ‘aj eC
j=1

We put x L V if x 1 span(V). Moreover, V*+ = {y € C" |y 1V}
Exercise 0.3.

(a) dim(V) =n — dim(V*).

(b)yx1lV & xlwvforalli=1,....k & V*x=0.
(¢) dim(span(V)) < k.

The angle Z(x,y) between two non-trivial n-vectors x and y is in [0, 17| such that

ly* x|
cosZ(x,y) = ——.
%) = Il Tl

B Matrices.

Let A = (ai;) be an n x k matrix. We will view the matrix A as map from C* to C" defined
by the matrix-vector multiplication: z ~ Az (z € CF).

The column (row) rank of A is the maximum number of linearly independent columns (rows)
of the matrix A.

Theorem 0.1 The row rank of a matriz is equal to the column rank.

The above theorem allows us to talk about the rank of a matrix.
The range R(A) of A is {Ay ‘ y € C"}.
The null space N'(A) or kernel of A is {z € C* | Az = 0}.

Exercise 0.4.
(a) R(A) = span(A).



(b) the rank of A equals dim(R(A)).
(c) N(A) = R(A)*.
(d) dim(R(A)) =n — dim(N(A)).

Exercise 0.5.
(a) A:C" — C"is alinear map <
for some 1 x k matrix A we have that A(z) = Az for all z € C*.

(b) Let vy,...,v, be a basis of C* and w1,...,w, a basis of C". Let V = [v1,...,v;] and
W = [wy,...,w,]. Then V and W are non-singular and W~=1AV is the matrix of the map
z ~ Az from CF to C" with respect to the V and W basis.

Exercise 0.6. Let A = [aj,...,a;] be an n x k matrix and B = [by,...,b] and m X k
matrix. Let D = diag(A1,...,A\x) be an k x k diagonal matrix with diagonal entries A;.

(

(b) (BA*)* = AB".
(c) AB*=Y"_ a;b’.
(d) a;b} are n x m rank one matrices.
(

e) ADB* = Y% \jab.

Exercise 0.7. Let the n x n matrix U = (u;;) be upper triangular, i.e., u;; = 0if i > j.

(a) U~! is upper triangular and U* is lower triangular.

(b) If in addition the diagonal of U is the identity matrix, then the diagonal of U™! is the
identity matrix as well.

(¢) The product of upper triangular matrices is upper triangular as well.

If A is an n x n matrix, then the determinant det(A) is the volume of the ‘block’
{Ax | x = (21,...,2,)",2; €[0,1]}. The trace trace(A) of A is the sum of its diagonal entries.

Theorem 0.2 If A isn x k and B is k x n, then trace(AB) = trace(BA).
Ifn =k, then det(AB) = det(A)det(B).

Exercise 0.8. Let A be an n X n matrix.
(a) Prove that the following properties are equivalent:
e det(A) £ 0.
e A had full rank.
e A has a trivial null space: N'(A) = {0}.
e The range of A is C": R(A) =C".
e A:C" — C" is invertible.
e There is an n x n matrix, denoted by A~!, for which A=1A =1.
A is non-singular if A has one of these properties. A~! is the inverse of A.
(b) AA"'=T. If Bisn xnand BA=Tor AB=1, then B= A1
(¢) With Cramer’s rule, the inverse of a matrix can be expressed in terms of determinants of

submatrices. However, this approach for finding inverses is extremely inefficient and, except for
very low dimensions, it is never used in practice. Cramer’s rule for n = 2:

N I 5B
) ad — By -y a |

Exercise 0.9.



GRAM SCHMIDT ORTHONORMALISATION
ri = a2, @ =ay/ry, £=1
for j=2,....k
Orthogonalise:
vV =a,;
for i=1,...,/
Fip = 4ia;, Ve v—q;ry;
end for
Normalise:
resiy = [[vll2
If repa; #0
L— L+ 1, qp=vV/[ry
end if
end for

ALGORITHM 0.1. The Gram—-Schmidt process constructs an orthonormal basis q;.. .., qr for the space

spanned by a;..... aj. Here « indicates that the new quantity replaces the old one. If a; isin the span of
ai.....a;-1, then, a; is in the span of qi.....q;y, r¢; =0 and no new orthonormal vector ¢, is formed.
If the vectors a,,.... ay, are linearly independent then £ at the end of each loop equals j.

(a) Let A, L and U be n x n matrices such that A = LU, L lower triangular with diagonal I
and U upper triangular. Let pg; be the (j, j)-entry of U. det(A) = det(U) = py - ... - pp.

Exercise 0.10. Let A be an n x n non-singular matrix.
(a) Prove that (AT)™! = (A™1)T and (A")~! = (A~1)".
We will put A~T instead of (AT) ™! and A" instead of (A")~ L

C Orthonormal matrices.

V = [vi,...,v; is orthogonal if v; L v; forall i,j=1,....k i# j.
If V' is orthogonal and, in addition, |v;]|2 =1 (j = 1,....k), then V is orthonormal.
In some textbooks, V is called orthogonal if multiplication by V preserves orthogonality

Exercise 0.11. Let V be an n x k matrix.
(a) If V is orthonormal, then k = dim(span(V)).
(b) Visorthonormal <& V*V = [ the k x k identity matrix

Let ay,...,a; be non-trivial n-vectors.
The Gram-Schmidt process in ALG. 0.1 (see also Exercise 0.12(a)) constructs orthonormal
n-vectors qy,...,q¢ that span the same space as a;,...,a;. The q; form the columns of an
n x £ orthonormal matrix Q. Note that £ < k and £ < n, while £ < k only if the vectors
ay,...,a; are linearly dependent. Let R be the £ x k matrix with ij entry r;; as computed in
the algorithm and 0 if not computed. Then A = QR. The following theorem highlights this
result.

Theorem 0.3 Let A = [ay, ... .a;] be an n x k matriz.
Let Q and R be as produced by the Gram-Schmidt process applied to the columns of A.
Then Q is orthonormal, span(A) = span(Q), R is upper triangular, and A = QR.



A matrix Q is unitary of Q is square and orthonormal.

Exercise 0.12. Proof of Theorem 0.3. Let A =Jay,...,a;] be an n X k matrix.
(a) Suppose qi, .. .,qe is an orthonormal system, ¢ < k. For a; € C", consider
ri;=qia; (i=1,...,0), v=a;— quu, (0.1)
and, if ||v||2 # 0,
rerry = [Ivl2, Qe = . (0.2)
+1,5
Then, qe+1 i Spa'n(q17 R q@)a and
o+1
a; = Zqi rij = Qug171y,
where Q41 = [q1,...,q¢+1] and 7; € C**! has ith entry ri; as described above in (0.1) and
(0.2). In particular, Q41 is orthonormal and a; € span(Qg41).
n (0.1), the vector a; is orthogonalised against qu, ..., qe, while in (0.2) the vector v is
normalised.
(b) Show that (0.1) can be expressed as
— 8, — Qu(Qja,), 0.3)

(c) If [[v[|2 = 0, then a = Qr;, where 7 is the £ upper part of r;.

(d) Prove Theorem 0.3: there is an n x £ orthonormal matrix Q, with ¢ < min(k,n), and an
¢ x k upper triangular matrix R such that

A =QR. (0.4)
(e) There is an n X n unitary matrix Q and an n X k upper triangular matrix R such that
A=QR (0.5)

(f) Relate Q and Q and R and R.

The relation in (0.5) is the QR-decomposition or QR-factorisation of A. The relation
in (0.4) is the economical form of the QR-decomposition.

Theorem 0.4 Let V be a k-dimensional linear subspace of C"*. Let b € C".
For a by € V, the following two properties are equivalent:

(i) |b=bglla <|b=v|2 foralveV.
(i) b-—by L V.

There is exactly one bg € V with one of these equivalent properties.

Exercise 0.13. Let V be a k-dimensional linear subspace of C™. Let b € C".
(a) There is an n X k orthonormal matrix V such that V = span (V).

(b) We have that bg = V(V*b) € V and b — by L V.

(c) Ifx—y+z for some y € V and z L V, then y = xg = V(V*x).

(d) C"=Va V.

(

e) Prove Theorem 0.4.



Exercise 0.14. Let A be an n X k matrix.
(a) R(A) = {Az|z L N(A)}.

(b) For an x € C*, let 2, € C* be such that z; L N(A) and = — z; € N(A).
There is precisely one k x n matrix, denoted by Af, for which

Aly =0 if y L R(A) and Af(Ax) =, (zeC").

AT is the inverse of A as a map from N (A)+ to R(A) with null-space equal to R(A)~+
Al is the Moore—Penrose pseudo inverse or generalised inverse of A.

(¢) The following four properties do not involve the notion of orthogonality. They characterise
the Moore—Penrose pseudo inverse.

AATA = A, ATAAT=AT (AA")"=AA", (ATA)" = ATA.

D Eigenvalues.

Let A be an n x n matrix. Let A € C.

If x € C", then (\,x) is an eigenpair of the matrix A if Ax = Ax and x # 0, X is an
eigenvalue and x is an eigenvector associated to the eigenvalue A.

V) ={xeC" ‘Ax = \x} is the eigenspace associated to A. The dimension of V() is the
geometric multiplicity of the eigenvalue .

The characteristic polynomial P4 is defined by

Pa(¢) =det((I-A) (¢ €C)

Exercise 0.15.

(a) A € Cis an eigenvalue of A if and only if A is a root of Py, i.e., P4(A\) = 0.

(b) If P4 has k mutually different complex roots, then A has at least k eigenvalues.

(c) If A = (a;;) is real (i.e., a;; € R for all 4,7), and ()\,x) is an eigenpair of A, then (), %) is
an eigenpair of A.

The algebraic multiplicity of the eigenvalue \ is the multiplicity of the root A of Pj4.
A is a simple eigenvalue of A if its algebraic multiplicity is one. An eigenvalue A of A is
semi-simple if the algebraic multiplicity equals the geometric multiplicity. The matrix A is
semi-simple if all of its eigenvalues are semi-simple. If all eigenvalues are simple, then A is
said to be simple.

Exercise 0.16.
(a) Any simple eigenvalue is semi-simple.
(b) Counted according to algebraic multiplicity, A has n eigenvalues.

(¢) Give an example of a 2 x 2 matrix with an eigenvalue with algebraic multiplicity 2 and
geometric multiplicity 1.

(d) For any n X n matrix B, the two matrices AB and BA have the same eigenvalues with
equal multiplicity (algebraic, as well as geometric).
The same statement also holds for the non-zero eigenvalues in case A is n x k and B is k X n.

(e) Eigenvalues do not depend on the basis, i.e., if T is a non-singular n X n matrix, then A
and T~! AT have the same eigenvalues with equal multiplicity (algebraic, as well as geometric).

(f) Any non-trivial linear subspace V of C" that is invariant under multiplication by A
i.e., Ax € V for all x € V) contains at least one eigenvector of A.

(i
(g) V(A) Cc W(A )_{WG(C”‘(A—)\I) w = 0 for some k € N}
(h) Both V(X) and W(X) are linear subspaces of C" invariant under multiplication by A.



(i) The dimension of W(A) equals the algebraic multiplicity of the eigenvalue A.

(j) To simplify notation, assume 0 is an eigenvalue of A (otherwise, replace A by A — AI).
Let x be a non-trivial vector in W(0). Let k € N be the smallest number for which A*x = 0.
Assume apy, A™x + ...+ a1 Ax + agx = 0 for some a; € C. Prove that ag = ... = ap—1 =0.
Prove that x € W(u) < p = 0. In particular, W(A) N W(u) = {0} if X # u.

(k) C" =@ W(N), where we sum over all different eigenvalues A of A.

If Q is n x k orthonormal with £k < n and S is k x k upper triangular such that

AQ=Qs, (0.6)

then (0.6) is a partial Schur decomposition (or partial Schur form) of A (of order k). If
k =n, then (0.6) is a Schur decomposition of Schur form.

Theorem 0.5 A has a Schur decomposition.

Proof. Apply induction to k to prove the theorem:

There is a normalised eigenvector q; of A. Note that Aq; = qiA; is a partial Schur
decomposition of order 1.

Suppose we have a partial Schur decomposition AQi = QgSk of order k. Note that
Qé‘ is a linear subspace of C" that is invariant under multiplication by the deflated matrix
A = (I - QrQ)A — QiQ}). Therefore (see (f) of Exercise 0.16), A has a normalised
eigenvector in Qi say qxi1 with eigenvalue, say Ag1. Expanding Qi to Q41 and Sk to
Sk+1,

S QrAqri1

Qit1 = [Qr,qt1] and Sy = | =)
0 Akl

leads to the partial Schur decomposition AQg+1 = Qg+1Sk+1 of order k + 1. a

Exercise 0.17. Suppose we have a partial Schur decomposition (0.6).
(a) The diagonal entries of S are eigenvalues of S and of A.
(b) If Sy = Ay, then (A, Qy) is an eigenpair of A

(¢) The computation of y with Sy = Ay requires the solution of an upper triangular system.
Without proof, we mention:

Theorem 0.6 There is a non-singular n x n matrix T such that AT = TJ, where J is a
matriz on Jordan normal form, i.e., J is a block diagonal matrix with Jordan blocks on the

Al

A
diagonal. A Jordan block is a square matrix of the form Jy =

A is diagonalizable if J is diagonal (i.e., all Jordan blocks in J are 1 x 1).

Theorem 0.7 The following properties are equivalent voor any n X n matriz A:

1) A is semi-simple,

2) A is diagonalizable,

3) there is a basis of eigenvector of A, i.e., there is a basis v1,..., vy of C" such that v; is
an eigenvector of A for all i.



Exercise 0.18. Proof of Theorem 0.7.

(a) If an eigenvalue A of A shows up in exactly p Jordan blocks in the Jordan normal form,
then p is the geometric multiplicity of A.

(b) Suppose J is on Jordan normal form. Describe V(A) and W(A) in terms of the standard
basis vectors e;.

(c) A issemi-simple < A is diagonalizable.
(d) Prove Theorem 0.7.

Theorem 0.8 (Cayley-Hamilton)
Let Pa(¢) = (" + an_1¢" 1 +...+ a9 (¢ €C) be the characteristic polynomial of A. Then

Py(A)= A"+, A"+ +agl=0. (0.7)

The minimal polynomial Q4 of A is the monic non-trivial polynomial Q) of minimal degree
for which Q(A) = 0. Q is monic if Q(¢) = ¢* + terms of degree < k. The minimal polynomial
factorises Py, i.e., P4 = QaR for some polynomial R (R might be constant 1).

Exercise 0.19. Proof of Theorem 0.8. Let A1,..., A, be the eigenvalues of A counted
according to algebraic multiplicity.

(a) If T is a non-singular n x n matrix and P is a polynomial, then P(T~'AT) = T-!P(A)T.
(b) Let p be a polynomial. Show that

p(A) PN "N
p()=1 0 p(N) P | if J=
0 0 »(\)

(0.8)

o O >
S > =
> = O

Generalise this result to Jordan blocks of higher dimension.

(c) If Jy is a Jordan block of size £ x ¢, then P(Jy) = 0 for any polynomial P of the form
P)=A-0'Q(¢) (¢eC),with Q a polynomial.

(d) Use Theorem 0.6 to prove (0.7).

(e) Show that the minimal polynomial factorises the characteristic polynomial.

(f) Show that the degree of the minimal polynomial is at least equal to the number of different
eigenvalues of A, with equality if and only if A is semi-simple. The degree of the minimal
polynomial is also called the degree of A.

Exercise 0.20. Consider the situation of Theorem 0.8.
(a) Prove that

n n

ap =det(A) = [[ A, an-1 =trace(A) =),

j=1 j=1

(b) Suppose A is non-singular. Note that then ag # 0. Consider the linear system Ax = b.
Show that
x = q(A)b for some polynomial q of degree < n.

Actually, one can take ¢(¢) = falo(gnfl +an_1¢""2+ ...+ a1). Give also an expression for ¢
in terms of the minimal polynomial.

Exercise 0.21. Let B be an n X n matrix that commutes with A, i.e., BA = AB.
(a) Both space V(A) and W(A) (w.r.t. A) are invariant under multiplication by B.
(b) The space V() contains an eigenvector of B.

Ify e C",y # 0 and y*A = py*, then y is a left eigenvector of A associated to the
(left) eigenvalue u. If we discuss left eigenvectors, then we refer to non-trivial vectors x for
which Ax = A\x as right eigenvectors. Left and right eigenvectors with different eigenvalues
are mutual orthogonal (for a proof, see Exercise 0.22):



Theorem 0.9 Let A be an n X n matriz.

1) A € C is a left eigenvalue of A if and only if X is a right eigenvalue of A.

2) If x is a right eigenvector with eigenvalue A and'y be a left eigenvector with eigenvalue p # A,
then y 1 x.

Corollary 0.10 Let A be an n X n matriz.

Suppose u is in the span of right eigenvectors x; of A with eigenvalue \;: u =" a;X;.

If \; is simple and y; is the left eigenvector of A associated with \; scaled such that y*x =1,
then o; = y;u.

Exercise 0.22. Let y be a left eigenvector with eigenvalue p.

a)
b)
¢) If x is a right eigenvector with eigenvalue p and there is an n-vector z such that Az = pz+x
x is associated with a non-trivial Jordan block J,,), then y L x.

For A € C, X left eigenvalue < Py(A\) =0 <& )\is aright eigenvalue.
If x is a right eigenvector with eigenvalue A\ and A # u, then y | x.

d) The subspace y= is invariant under multiplication by A.

e) If p is simple, then y* = @ W()), where we sum over all eigenvalues A of A, \ # p.

£) {y|(A* — D)’y = 0 for some £ € N} L W() if A # p.

g) Give an example of a matrix A with left and right eigenvector y and x, respectively, both

associated to the same eigenvalue A such that y 1 x. (Hint: you can find a 2 x 2 matrix A
with A = 0 with this property.)

(
(
(
(
(
(
(
(

The spectrum A(A) of A is the set of all eigenvalues of A.
The spectral radius p(A) of A is the absolute largest eigenvalue of A:

p(A) = {]A[| X e A(A)}.

For complex numbers x with |z| < 1 we have that z¥ — 0 (k — oo) and (geometric series)
l-—2)t=14+a+2®+2>+. ...
For matrices A, p(A) < 1 implies A¥ — 0 (k — o0) and (Neumann series)
I-A)'"=TI+A+A+ A +.... (0.9)

Theorem 0.11

1) A*x -0 (k—0) forallxeC" < p(A)<1.

2) If 1 ¢ A(A), then I — A is non-singular.

3) If p(A) < 1, then I + A+ ...+ A* converges to (I — A)~1.

Exercise 0.23. Proof of Theorem 0.11.

(a) Prove the first statement of the theorem in case A is a Jordan block Jy. (Hint: J¥ is upper
triangular with entries A", nA" =1, n(n — 1)A\"=2, ..., on the main diagonal, first co-diagonal,
second co-diagonal, ..., respectively, see (0.8))

(b) Prove the first statement of the theorem for the general case.

(c) Prove the third statement. (Hint: check that (I— A)(I+ A +...+ AF) =1 — A1)

An eigenvalue A of A is dominant if it is simple and |A| > |);] for all other eigenvalues ),
of A. An eigenvector associated to a dominant eigenvalue is said to be dominant.



Theorem 0.12 (Perron—Frobenius) Let A be such that A = |A|. Then p(A) € A(A).
If, in addition, A is irreducible and a-periodic,® then p(A) is a dominant eigenvalue of A.

A characteristic polynomial is monic: the leading coefficient is one. Conversely, any monic
polynomial is a characteristic polynomial of some suitable matrix. This statement is obvious if
the zeros of the polynomial are available: then, we can take the diagonal matrix with the zeros
on the diagonal. However, for a suitable matrix, we do not need the zeros.

Let p(¢) = ¢" — (an—1¢""'+...+ a1{+ap) (¢ € C) be a polynomial (with a; € C). Then

[ an=1 ] [ An=1 ] [ Op—1 Op—2 ... Q] Qo i
A2 A2 1 0 ... 0 0
H =2 , where H= 0 R C (0.10)
1] L 1] i 1 0 |

for all zeros A of p. In particular, the zeros of p are eigenvalues of H and p is the characteristic
polynomial of H. H is the companion matrix of p. Modern software packages as MAT-
LAB compute zeros of polynomials, by forming the companion matrix and applying modern
numerical techniques for computing eigenvalues of matrices.

Exercise 0.24. Let p a polynomial with companion matrix H (cf., (0.10)).

Let x(¢) be the vector with coordinates ¢"~!,¢"=2,...,(,1 (¢ € C).
(a) Prove that Hx(\) = Ax(A\) & p(A) =0.
(b) Prove that p is the characteristic polynomial of H in case all zeros of p are mutually
different.
(c) Suppose p(A) = p(A) = 0. Show that Hx'(\) = Ax/(A\) + x and conclude that X is an
eigenvalue of H of algebraic multiplicity at least 2. and that the associated Jordan block J) is
at least 2 x 2.

(d) Prove that p is the characteristic polynomial of H regardless the multiplicity of the zeros.

E Special matrices.

A is an n X n matrix.

A is Hermitian (or self adjoined) if A* = A. A is symmetric if AT = A.
Note hat for a real matrix A (i.e., all matrix entries are in R), A is symmetric if and only of
A is Hermitian. Often, if a matrix is said to be symmetric, it is implicitly assumed that the
matrix is real. If that is not case, the matrix is referred to as a complex symmetric matrix, i.e.,
the possibility that matrix entries are non-real is explicitly mentioned.

A matrix A is anti-Hermitian if A* = —A. Sometimes it is convenient to split a (general
square) matrix A into a Hermitian and an anti-Hermitian part:

A=A,+A, with A,=1(A+A") and A,=-(A-AY (0.11)

N =

(see Exercise 0.25), as a complex number « can be split onto a real and an imaginary part:
a = a, +ia; with a, = Re(a) and «; = Im(«). Here ¢ is the complex number /—1.

Exercise 0.25.
(a) If A and H are Hermitian and «, § € R, then A + SH is Hermitian.
(b) If V is an n X k matrix and A is Hermitian, then V*AV is Hermitian.

3The directed graph associated to the matrix A consists of vertices 1,...,n and there is an edge
from i to j iff A;; # 0. A matrix is irreducible if for all 4, j there is a path in its graph from vertex 4
to vertex j. The matrix is a-periodic if the greatest common divisor of the length of circular paths is 1.
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(c) If A is anti-Hermitian, then iA is Hermitian. Here i = /—1.

(d) Any square matrix A can be written as in (0.11) with A}, Hermitian and A, anti-Hermitian.
(e) A is Hermitian < x*Ay € R for all x,y € C".

(f) Ix*Ax eRforallx e C" & x*A,x=0 for all x € C".

(g) fx*AxeRforallx e C" <& A = A, is Hermitian.

(h) If A = QSQ* is the Schur decomposition of an Hermitian matrix A, then S is a real
diagonal. In particular, an Hermitian matrix A is diagonalizable, all eigenvalues are real and
A has an orthonormal basis of eigenvectors, i.e., there is an orthonormal basis of C" such that
all basis vectors are eigenvectors of V.

A is a normal matrix if AA* = A*A.

Theorem 0.13 Hermitian and anti-Hermitean matrices are normal.

If A is normal, then a vector is a right eigenvector of A if and only if it is a left eigenvector.
The following properties are equivalent voor a square matriz A:

1) A is normal.

2) AjAr = ARA,.

3) There is an orthonormal basis of eigenvector of A.

4) A* = p(A) for any polynomial p for which p(\) = X for all eigenvalues \ of A.

5) There is a polynomial p for which A* = p(A).

Exercise 0.26. Proof of Theorem 0.13.
(a) Prove the first claim of the theorem.

(b) Subsequentially prove the following impications (see the theorem)
1) = 2), 2) = 3) (Hint: use (b) of Exercise 0.21),
3) = 4), 4) = 5) (Hint: use Lagrange interpolation), 5) = 1).

(c) Prove that left and right eigenvectors coincide in case A is normal. Does the converse hold?
Assume in the remaining of this exercise that A is normal

(d) Prove that there is a polynomial p as in 5) with degree < #A(A), i.e., the number of
different eigenvalues of A. In particular, the degree of the polynomial p is < the degree of the
minimal polynomial of A.

(e) If A* = p(A) then pop(A) = A, in particular the minimal polynomial of A is a polynomial
factor of the polynomial A — p(p(N)).

A is (semi-) positive definite if x*Ax > 0 (x*Ax > 0, respectively) for all x € C",x # 0.

Exercise 0.27.

A is positive definite < A is Hermitian and A > 0 for all eigenvalues A\ of A.
Here, you can use that A = 0 if x*Ax = 0 for all x € C". For a proof, see Exercise 1.9(a).)

b) A is semi positive definite < A is Hermitian and A > 0 for all eigenvalues A of A.

d) A ispositive definite < A = LL* for some non-singular nxn lower triangular matrix L.

(a)
(
(
(¢) A is positive definite < A = MM* for some non-singular n x n matrix M.
(
(Hint: apply (0.5) to M*).

(e) A is semi positive definite << A = MM* for some n x n matrix M.

In the above statements, it is essential that the positive definiteness is with respect to
complex data: if A is real and xTAx > 0 for all x € R", x # 0, then, we can not conclude that
A is symmetric.

(f) Give an example of a non-symmetric 2 x 2 real matrix A for which x™ Ax > 0 for all x € R?,

x # 0.
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F  Quiz

Exercise 0.28. Let

(
(
(
(

a) Wat is the Range of A?

b) What is the Null space of A?
¢) What is the rank of A?

d) What are the eigenvalues of A?
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