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The primary learning goal of the project.  The goal of this task is explore the application of two Krylov
subspace methods, namely, the CGS and the Bi-CGSTAB, by using matlab routines. The original references
for such methods are:

• Peter Sonneveld, CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems, SIAM J. Sci.
and Stat. Comput., (1988) 10(1), 36-52.

• H.  A.  van  der  Vorst,  Bi-CGSTAB:  A Fast  and  Smoothly Converging  Variant  of  Bi-CG for  the
Solution of Nonsymmetric Linear Systems,SIAM J. Sci. and Stat. Comput., (1991) 13(2), 631-644.

We are  now in a  position to  test  iterative solvers for sparse linear  systems for  both nonsymmetric  and
symmetric  matrices.  Type  at  matlab  help  Syntax  “bicgstab”  and  “cgs”  (see  also  the  examples  in  what
follows). The homework should be done under Matlab to take advantage of the available routines (it is highly
recommended). The project is organized in five sections as described in what follows, covering numerics,
applications and theory.

I) OVERVIEW: Consider the solution of

Ax=b,                                                                                    (1)

where A  R∈ NxN, x  R∈ Nx1, and the nonzero vector b  R∈ Nx1, with a integer N large so that we have a very
large sparse  matrix  A.  In practice,  when the coefficient  matrix  A is  sparse,  people  always  use iterative
methods rather than direct methods, say, Gaussian Elimination (GE), for the solution of (1). The reason is
that, GE needs to perform two basic steps to solve (1), as follows:

1. Decompose A as A = LU where L is lower triangular and U is upper triangular;

2. Solve Ly = b (for “y”) and Ux = y (for “x”) by forward and backward substitutions, respectively.



However, even though A is sparse, the resulting L and U are usually dense. Although Gaussian elimination is
straightforward to program, and rounding errors may be controlled (e.g., by the method of “Partial pivoting”
or “Rook pivoting”), it requires then a “N x (N+1)” augmented matrix to be stored, which may be inefficient
if N is very large, but most of the coefficients of A are zero. Such systems are called sparse, and some
routines  (e.g.,  CG,  PCG,  Bi-CG  and  Bi-CGSTAB)  may  be  more  efficient  for  large,  sparse  systems.
Morerover, if one uses GE to solve (1), one needs to store the L and U for the forward O(N2) and backward
O(N2) substitutions in step #2. Therefore, the storage requirement of GE is O(N2) of floating point numbers.
This is still a huge memory requirement since it is not unusual in industry and many other solutions to real-
life problems worldwide (with tremendous global issues: social, political, economic, environmental etc.…)
and thus N=109, N=1012 ( or more), and hence, N2 = 1018 (or N=1024) which is something out of the storage
capacity of most of the non-specialized and specialized computers nowadays. As specialized computers, we
mean  computers  to  execute  high  performance  parallel  computing  (MPI,  OpenMP,  Multicore,  etc...)
associated to applications.

Iterative methods, on the other hand, are cheap in storage. The typical operation in an iterative method is a
matrix (G) times a vector (v), i.e., “Gv”. The matrix G is usually constructed from A and is sparse. Hence G
occupies only a little memory in a computer.  Therefore, the memory required to implement an iterative
method is a very limited and that is why this kind of methods is so popular in practice when solving large,
sparse linear systems. Iterative methods nowadays can be divided into three groups (see, e.g., ref [16,17]):

i) Basic iterative methods;

ii) Krylov subspace methods;

iii) Multigrid methods.

In this project,  we will  only discuss and compare some of the methods from the second group through
numerical experiments supported by theory (see, e.g., [1]-[17]).  Some well-known methods from the first
group was already addressed in Project #2. The methods from the third group is not covered in this course,
but for those interested might take a look at first glance at the reference [14] in our bibliography, namely,
“William L. Briggs, Van Emden Henson and Steve F. McCormick. A multigrid tutorial, 2nd ed, PA, SIAM
(2000)”.

In the following lines we will overview some issues concerning CGS,  BiCG and  Bi-CGSTAB in order to
highlight some key issues and than facilitates the reading for theoretical purposes.

BiConjugate Gradient (BiCG).  The Biconjugate Gradient method generates two Conjugate Gradient like
sequences of vectors, one based on a system with the original coefficient matrix A, and one on A T (transpose
of A). Instead of orthogonalizing each sequence, they are made mutually orthogonal, or “bi-orthogonal”. This
method,  like  CG,  uses  limited  storage  (as  in  CG,  this  is  remarkable).  It  is  useful  when  the  matrix  is
nonsymmetric and nonsingular; however, convergence may be irregular (as in CG), and there is a possibility
that the method will break down. BiCG requires a multiplication with the coefficient matrix and with its
transpose at each iteration. We point out that the conjugate gradient method is not suitable for nonsymmetric
systems because the residual vectors cannot be made orthogonal with short recurrences, as proved in V.V.
Voevodin (1983) and V. Faber and T. Manteuffel (1984). A natural improvement of the CG is by the use of
preconditioning (PCG).  The generalized minimal residual  method (GMRES) retains orthogonality of the
residuals by using long recurrences, at the cost of a larger storage demand (the GMRES method will be
addressed in a forthcoming course project). The biconjugate gradient method (BiCG) takes another approach,
replacing the orthogonal sequence of residuals by two mutually orthogonal sequences, at the price of no
longer providing a minimization.



Conjugate Gradient Squared (CGS).  The Conjugate Gradient Squared method is a variant of BiCG that
applies the updating operations for the A-sequence and the AT-sequences both to the same vectors. Ideally,
this would double the convergence rate, but in practice convergence may be much more irregular than for
BiCG. A practical advantage is that the method does not need the multiplications with the transpose of the
coefficient matrix. Often one observes a speed of convergence for CGS that is about twice as fast as for the
biconjugate gradient method (BiCG), which is in agreement with the observation that the same “contraction”
operator is applied twice. However, there is no reason that the contraction operator, even if it really reduces
the  initial  residual,  should  also  reduce  the  once  reduced vector.  This  is  evidenced by the  often  highly
irregular convergence behavior of CGS. One should be aware of the fact that local corrections to the current
solution may be so large that  cancellation effects  occur.  This  may lead to  a less  accurate  solution than
suggested by the updated residual (van der Vorst 1992). The method tends to diverge if the starting guess is
close to the solution. CGS requires about the same number of operations per iteration as the BiCG, but does
not involve computations with AT. Hence, in circumstances where computation with AT is impractical, CGS
may be attractive.

Biconjugate Gradient Stabilized (Bi-CGSTAB). The Biconjugate Gradient Stabilized method is a variant
of BiCG, like CGS, but using different updates for the AT-sequence in order to obtain smoother convergence
than CGS. The conjugate gradient method is not suitable for nonsymmetric systems because the residual
vectors cannot be made orthogonal with short recurrences, as proved in V.V. Voevodin (1983) and Faber and
Manteuffel (1984). The generalized minimal residual method (GMRES) retains orthogonality of the residuals
by using  long  recurrences,  at  the  cost  of  a  larger  storage  demand.  The  BiCG takes  another  approach,
replacing the orthogonal sequence of residuals by two mutually orthogonal sequences, at the price of no
longer providing a minimization. The Bi-CGSTAB method was developed to solve nonsymmetric linear
systems while avoiding the often irregular convergence patterns of the conjugate gradient squared method
(van der Vorst 1992). Bi-CGSTAB often converges about as fast as the conjugate gradient squared method
(CGS), sometimes faster and sometimes not.  CGS can be viewed as a method in which the biconjugate
gradient  method (BiCG) “contraction” operator  is  applied twice.  Bi-CGSTAB can be interpreted as  the
product of BCG and repeated application of the generalized minimal residual method. BCGSTAB requires
two matrix-vector  products  and  four  inner  products,  i.e.,  two inner  products  more  than  the  biconjugate
gradient method or the conjugate gradient squared method (van der Vorst 2003).

II) THE MATLAB PROGRAMS TO HANDLE SPARSE MATRICES “bicgstab” and “cgs”. Type at
matlab help Syntax “bicgstab” and “cgs” in order to learn about the “bicgstab” and “cgs” Matlab programs to
handle sparse matrices we will consider "SHERMAN5" problem from set SHERMAN, from the Harwell-
Boeing Collection. For a description of the "sherman5" matrix (actually, A and b linked to a unsymmetric
sparse linear system) see the following links. We will consider other similar sample matrices these sites.

Matrix Market: http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/sherman/sherman5.html

UF Sparse Matrix Collection: http://www.cise.ufl.edu/research/sparse/matrices/HB/sherman5.html

The University of Florida Sparse Matrix Collection is a large and actively growing set of sparse matrices that
arise in real applications. The Collection is widely used by the numerical linear algebra community for the
development and performance evaluation of sparse matrix algorithms. It allows for robust and repeatable
experiments.  Its  matrices  cover  a  wide spectrum of  domains,  include those arising from problems with
underlying 2D or 3D geometry (as structural engineering, computational fluid dynamics, model reduction,
electromagnetics, semiconductor devices, thermodynamics, materials, acoustics, computer graphics/vision,
robotics/kinematics,  and  other  discretizations)  and  those  that  typically  do  not  have  such  geometry
(optimization,  circuit  simulation,  economic  and  financial  modeling,  theoretical  and  quantum chemistry,
chemical process simulation, mathematics and statistics, power networks, and other networks and graphs.



The Matrix Market  ia  a  visual  repository of  test  data  for  use  in  comparative studies  of  algorithms for
numerical  linear algebra, featuring nearly 500 sparse matrices from a variety of applications, as well as
matrix generation tools and services.

Although the last change in Matrix Market is 10 May 2007 (http://math.nist.gov/MatrixMarket/index.html),
one can find a lot of very nice example there. Indeed, nowadays, most of the content of the Matrix Market is
now at the UF Sparse Matrix Collection http://www.cise.ufl.edu/research/sparse/matrices/ that is maintained
by Tim Davis, last updated 10-Jun-2015.

SHERMAN model problem. About the "SHERMAN5" problem from set SHERMAN, from the Harwell-
Boeing Collection. In the summer of 1984, Andy Sherman of Nolan and Associates, Houston, TX, USA,
issued a challenge to the petroleum industry and the numerical analysis community for the fastest solution to
a set of 5 systems of linear equations extracted from oil reservoir modeling programs. These are those five
matrices. Each matrix arises from a three dimensional simulation model on an NX x NY x NZ grid using a
seven-point  finite-difference  approximation  with  NC  equations  and  unknowns  per  grid  block.  The
corresponding right-hand side vector is also supplied. See the above links for more information.

Example run using Matlab bicg native program. First, you will download and save the zip file “aux-files-
taskP3.zip”  at  http://www.ime.unicamp.br/~ms993/exerc%C3%ADcios in  your  computer.  Second,  unzip
aux-files-taskP3.zip to appear the directory aux-files-taskP3 and then move the prompt command to this
folder.

Caution. When using Matlab programs you MUST take care to NOT save your own programs cg, bicgstab
or others with the SAME name into the aux-files-taskP3 folder. In other words, in the folder with your own
Matlab codes take care to NOT contain “qmr”, “bicg”, “cgs”, “bicgstab”, etc... as well as any other related
program with the same name as available in maltab enviroment. In what follows, commands after ">>" are
proper command lines of matlab prompt and the blue color text after % are just some comments about what
we are doing here. 

First, move into folder aux-files-taskP3 and invoke matlab. Next, type the commands:

>> load('sherman5.mat');  % loading sherman5.mat file with A and b entries

>> A= Problem.A; % create A in matlab format

>> spy(A); % looking at the A matrix structure (the right figure will appear)

>> [m,n] = size(A); % a way to get dimensions of the matrix A (m-rows and n-colums)

>> xtrue = 0.5 + sin( pi*(0:n-1)'/(n-1)); % choose a known solution vector

>> b = A * xtrue ;  % choose the corresponding right hand side

>> x0 = zeros(n,1);  % a vector of all zeros initial “guess” or “approximation”

>> M = speye(m);  % let M be an m by m sparse identity matrix

>> max_it = 500;  % number of iterations

>> tol = 1.e-8;  % tolerance

>> tic, [x,flag,relres,iter,resvec] = bicg(A,b,tol,max_it);t_bicg = toc; % running the BiConjugate Gradient

>> flag

flag =

     1     % flag=1 means that bicg did not converge

>> max_it=5000;  % So max_it is possibly too small, then you might reset it

>> tic, [x,flag,relres,iter,resvec] = bicg(A,b,tol,max_it);t_bicg = toc; % running the BiConjugate Gradient

>> flag

http://www.cise.ufl.edu/research/sparse/matrices/
http://www.ime.unicamp.br/~ms993/exerc%C3%ADcios


flag =

     0     % flag=0 means that bicg did converge

            % To plot the graph of the residuals per iterations, you need to take the following steps

>> semilogy(1:length(resvec),resvec/norm(b),'--'),grid,  % 

>> title('Residuals per iterations - sherman5 model problem: cgs convergence behavior')

>> xlabel('iterations')                       

>> ylabel('||b-A * x|| / ||b||')               

            % If everything goes fine, you must see the below graph

If the above example we show how to construct a proprer right hand side (rhs) b aiming the use of the matlab
native program bicg. But we can also use the rhs associated to the SHERMAN model problem. To this end,
just redo all the above command as follows:

>> clear

>> clc

>> load('sherman5.mat');

>> A= Problem.A;

>> b= Problem.b;

>> spy(A);

>> spy(b);

>> [m,n] = size(A);

>> x0 = zeros(n,1);

>> M = speye(m);



>> tol = 1.e-8;

>> max_it=5000;

>> tic, [x,flag,relres,iter,resvec] = bicg(A,b,tol,max_it);t_bicg = toc;

>> flag

flag =

     0

>> semilogy(1:length(resvec),resvec/norm(b),'--'),grid,

>> title('Residuals per iterations - sherman5 model problem: bicg convergence behavior')

>> xlabel('iterations')

>> ylabel('||b-A * x|| / ||b||')

 % As before, if everything goes fine, you must see the below graph

Try yourself the following list of commands after you have rerun the "bicg matlab command" for the both
rhs, as discussed in the above.

>> condest(A)   % What is does means ?

>> M = speye(m);   % What is does means ?

>> nnz(A)   % What is does means ?

>> [m, n] = size(A)   % What is does means ?

>> iter   % What is does means ?

>> t_bicg   % What is does means ?

>> relres   % What is does means ?

>> flag   % What is does means ?



III) TASK NUMERICS

The computational bulk of work in the project #3. We now proceed to present and discuss the tasks into
this project #3 with the help of “bicgstab” and “cgs” Matlab programs. Thus, by using “bicgstab” and “cgs”,
solve large and sparse nonsymmetric/unsymmetric linear systems associtad to the matrices that appears in the
below table.

Caution. For all cases start with tol = 1.e-8 and max_it=5000 and it is your task verify if the rhs is avalible
or not; if “yes” than you must used (at least) otherwise you should construct the corresponding rhs b. 

Issue Warnings and Errors. You can issue a warning to flag unexpected conditions detected when running
a program. The warning function prints a warning message to the command line. Warnings differ from errors
in two significant ways: 1) Warnings do not halt the execution of the program and 2) You can suppress any
unhelpful  MATLAB® warnings.  Chekc the value “flag”.  Do not  ignore warning and error messages  in
matlab! They help a lot in most of the cases to shed light about what is going wrong. 

Solve Ax=b for real unsymmetric linear systems of equations linked fo the files in the below table. The files
are in the folder aux-files-taskP3. Matrix id (the id is unique in the UF Sparse Matrix Collection)

Group Matrix name Matrix id Tested ? Computational time

HB/sherman3  sherman3.mat 244 yes Less than 1 minute

HB/sherman5 sherman5.mat 246 yes Less than 1 minute

HB/arc130 arc130.mat 6 yes Less than 1 minute

Engwirda/airfoil_2d airfoil_2d.mat 1319 yes Less than 1 minute

------ ------ ------ ------ ------

Bai/dw4096 dw4096.mat 312 yes (*) Bonus

AtandT/pre2 pre2.mat 285 yes (*) Bonus

AtandT/onetone1 onetone1.mat 283 yes (*) Bonus

(*) By using the same configurations and setting as above for “bicgstab” and “cgs” we do not have success.
Messages of "warnings" were displayed (type, e.g., flag and take a look at the matlab help. 

Moreover, with the same parameters bicg and gmres did not worked properly (gmres with lack of memory!)
What to do? It is like a good challenge. I will seriously consider to give a credit of an extra (bonus) point for
those that are able to solve ANY one of the above three examples dw4096.mat or pre2.mat or onetone1.mat
using ONLY the “bicgstab” and/or  “cgs” (it is allowed to use any one of the many settings of matlab native
codes “bicgstab” and/or  “cgs”; type matlab help).

IV) TASK APPLICATIONS

As part of this project #3, you must search for the science, engineering application, economic, social, etc...
behind ALL the model problem matrices displayed in above table (even if you do not able to devise a way to
solve the pertinent linear system at hand) and than write a summary (maximum half of a page per item)
describing what is going on into these very nice looking matrices; see the “geometry” of such matrices
(search by id) at http://www.cise.ufl.edu/research/sparse/matrices/list_by_id.html

Applications are an essential complement to our research and development in algorithm design, numerical
libraries, collaborative middleware, data analysis and visualization, and exascale hardware and software as
well as to do good science and applied mathmatics, or just mathematics in a open minded view!

For concreteness, applied mathematic scientists carry out investigations in such several diciplines as climate
science, engineering diagnostics, materials science, nuclear reactor simulation, and metabolic modeling with
deep impact in real worl life to improve scientific, economic and social activities.



V) TASK THEORY

The thoery behind the numerical Krylov subspace method CGS and  Bi-CGSTAB. 

Consider the below key references (of course, you are free to consult any additional reference you wish,).

• Peter Sonneveld, CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems, SIAM J. Sci.
and Stat. Comput., (1988) 10(1), 36-52.

• H.  A.  van  der  Vorst,  Bi-CGSTAB:  A Fast  and  Smoothly Converging  Variant  of  Bi-CG for  the
Solution of Nonsymmetric Linear Systems,SIAM J. Sci. and Stat. Comput., (1991) 13(2), 631-644.

Now, describe in detailed the algorithms CGS and Bi-CGSTAB (from a theoretical  viewpoint).  Hint:  it
might  be  useful  to  consult  the  following codes  in  the  “aux-files-taskP3”,  namely “template-cgs.m” and
“template-bicgstab.m”. In addition, it also might be useful take a look at the Matlab hehp and check for
yourself the matlab documentation to learn more about the bicg and bicgstab Syntaxes as follows:

bicg  Biconjugate gradients method  Syntax

x = bicg(A,b)
bicg(A,b,tol)
bicg(A,b,tol,maxit)
bicg(A,b,tol,maxit,M)
bicg(A,b,tol,maxit,M1,M2)
bicg(A,b,tol,maxit,M1,M2,x0)
[x,flag] = bicg(A,b,...)
[x,flag,relres] = bicg(A,b,...)
[x,flag,relres,iter] = bicg(A,b,...)
[x,flag,relres,iter,resvec] = bicg(A,b,...)

bicgstab Biconjugate gradients stabilized method Syntax

x = bicgstab(A,b)
bicgstab(A,b,tol)
bicgstab(A,b,tol,maxit) 
bicgstab(A,b,tol,maxit,M)
bicgstab(A,b,tol,maxit,M1,M2)
bicgstab(A,b,tol,maxit,M1,M2,x0)
[x,flag] = bicgstab(A,b,...)
[x,flag,relres] = bicgstab(A,b,...)
[x,flag,relres,iter] = bicgstab(A,b,...)
[x,flag,relres,iter,resvec] = bicgstab(A,b,...)

VI)  GENERAL COMMENTS TO THINK AND TO BE ADDRESSED DURING PREPARATION
FOR THIS PROJECT

• Does bicgstab converge faster than bicg (or vice-versa)?  Is the extra work (if any) per step worth the
reduction in steps?  Does bicg fail more frequently?

• Does cgs require substantially less work than bicstab?  Is the reduction of work per step worth the
extra iterations (if any)?

• Is CGS better than bicg in terms of iterations, run time or reliability?

• Compare any two methods (bicg, cgs or bicgstab) in the same way.



• Recall  the  table  from  class  which  suggests  some  natural  comparisons  (direct  methods  versus
iterative, Krylov subspace methods)

• Does matlab worked well for all cases ? If not, what would be a possible cure to circunvent this ?

• Finally, try experiments (including theory and numerics) not mentioned above, of your choice!
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