MS 211 - LISTA DE EXERCICIOS No. 1 ARITMÉTICA DE PONTO FLUTUANTE

- 1. Considere uma máquina com sistema de representação de números definido por: base 10 $(\beta = 10)$, 4 dígitos na mantissa (t = 4) e expoente no intervalo: [-5; 5]. Pede-se:
 - a) qual o menor e o maior número em módulo representado nesta máquina?
 - b) como será representado o número 73758 nesta máquina se for usado o arredondamento? E se for usado o truncamento?
 - c) Se a = 42450 e b = 3 qual o resultado de a + b se for usado o arredondamento? E se for usado o truncamento? Justifique o resultado.
 - d) Considerando ainda, a=42450 e b=3, qual o resultado da operação: $a+\sum_{i=1}^{10} b$, considerando que está sendo realizado o truncamento?
 - e)Repetir o item (d), para a operação: $\sum_{i=1}^{10}b+a.$
 - f) Considerando a=4245, b=300 e c=100. Qual o resultado obtido nesta máquina para d e e, calculados de acordo com: d=(a*b)/c e e=a*(b/c). Justifique!
 - g) O que podemos concluir sobre a validade das propriedades como: comutativa, associativa, elemento neutro da adição de números em aritmética de ponto flutuante?

2. Precisão da Máquina

A precisão da máquina é definida como sendo o menor número positivo em aritmética de ponto flutuante, ε , tal que : $(1+\varepsilon)>1$. Este número depende totalmente do sistema de representação da máquina: base numérica, total de dígitos na mantissa, da forma como são realizadas as operações e do compilador utilizado. É importante conhecermos a precisão da máquina porque em vários algoritmos precisamos fornecer como dado de entrada um valor positivo, próximo de zero para ser usado em testes de comparação com zero.

O algoritmo abaixo estima a precisão da máquina :

$$Passo 1: A = 1$$

$$s = 1 + A$$

$$Passo 2: \text{Enquanto } s > 1, \text{ faça}:$$

$$A = A/2$$

$$s = 1 + A$$

 $Passo\ 3$: Faça Prec = A * 2 e imprimir Prec.

- a) Teste este algoritmo usando o MatLab. Compare s valor obtido com o valor obtido ao se dar o comando eps do MatLab. Use o comando help eps no Matlab para obter a descrição de eps no Matlab.
- b) Interprete o passo 3 do algoritmo, isto é, por que a aproximação para *Prec* é escolhida como sendo o dobro do último valor de A obtido no passo 2?
- c) Na definição de precisão da máquina, usamos como referência o número 1. No algoritmo abaixo a variável ω é um dado de entrada, escolhido pelo usuário:

$$\begin{array}{l} \textit{Passo 1}: \ A = \omega \\ s = \omega + A; \\ \textit{Passo 2}: \ \textit{Enquanto} \ s > \omega, \ \textit{faça}: \\ A = A/2 \\ s = \omega + A \end{array}$$

 $Passo\ 3$: Faça Prec = A * 2 e imprimir Prec.

- c.1) Teste seu programa atribuindo para ω os números : 10^{-1} , 10^{-2} , 10^{-4} , 10^{-5} , 10^{-6} , 10^{-6} , 10^{-8} , 17, 184, 1575, , 17893.
- c.2) Para cada valor diferente para ω imprima o valor correspondente obtido para Prec. Justifique por que Prec se altera quando ω é modificado.
- 3. Cálculo de $\exp(x)$: o objetivo é calcular $\exp(x)$ pela série de Taylor até ordem n em torno de zero:

$$\exp(x) \simeq 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \frac{x^n}{n!}$$
 (1)

a) Escreva um programa para rodar no MatLab para obter a aproximação para $\exp(x)$ de acordo com a expressão (1). O valor de x e o número de termos da série, n, são dados de entrada deste programa.

Observe que o cálculo do fatorial: k!, necessário na série de Taylor, pode ser feito de modo a evitar o ocorrência de overflow É fácil evitar o overflow, desde que se observe que o termo (k) pode ser escrito como: $x^k/k! = x^{k-1} * x/(k-1)! * k$, onde o termo $x^{k-1}/(k-1)!$ já está calculado, pois a série está sendo avaliada a partir do primeiro termo. (Um erro comum no uso da fórmula de Taylor para o cálculo de $\exp(x)$ é escrever "procedimentos" para avaliar o fatorial: o valor de k é uma dado de entrada e a saída é k!. Nestes casos, há ocorrência de overflow).

Evitando o *overflow* a série de Taylor pode ser calculada com tantos termos quanto se queira. Qual seria um critério de parada para se interromper o cálculo da série, que não seja a comparação com o valor real de $\exp(x)$?

b) Teste seu programa com vários valores para x: positivos, negativos, ($x \approx 0$ e x distante de zero) e, para cada valor de x, teste o cálculo da série com vários valores para o número de termos: n. Analise os resultados obtidos.

Atividades extra classe

- 1. Acesse os links indicados na home page da disciplina, pois alguns deles são relacionados a dificuldades e até mesmo acidentes provocados por erros em aritmética de ponto flutuante.
- 2. Para saber mais sobre a formalização da representação de números em aritmética de ponto flutuante realize uma busca na internet utilizando como palavras—chave:

ieee754; william kahan; floating point.

Na home page de MS211 está indicado (em \underline{links}) um site com informações e artigos sobre este assunto.