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SUMMARY QR and SVD:
Numerical Methods for Least Squares Problems

MOTIVATION:
Computing the solution to Least Squares Problems is of great
importance in a wide range of fields ranging from numerical

linear algebra to econometrics, optimization as well as
engineering and applied sciences, just to name a few list.

Here we are going to present a set of numerically stable and
computationally efficient algorithms for computing the solution

to Least Squares Problems.

In order to evaluate and compare the stability and efficiency of
the proposed algorithms, key issues on the theoretical

complexities and numerical results have been highlighted.
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Here we are following the references:

David S. Watkins, Fundamentals of Matrix Computations, New
Jersey: John Wiley & Sons (3 ed., 2010).

Gene Golub and Charles Van Loan. Matrix computations, 3rd ed.,
Johns Hopkins Univ. Press (1996).

Roger Horn and Charles Johnson. Matrix analysis, Cambridge, MA,
Cambridge Univ. Press (1985).
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Computing the solution to Least Squares Problems

In this brief note, numerically stable and computationally
efficient algorithms for solving Least Squares Problems will be
considered as follows:

First, we will review basic the tools of orthogonality, norms, and
conditioning which are necessary for understanding the
numerical algorithms introduced in the following sections.

Second, the role of normal equations method using Cholesky
factorization will be discussed, taking into account the issues:
Flop complexity of numerical algorithms linked to computing the
Cholesky Factorization and possible shortcomings of the
normal equations approach.
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Computing the solution to Least Squares Problems

Third, we will see that the QR Factorization generates a more
stable and accurate solution than the previous normal
equations approach, making it one of the most important tools
in computing Least Squares solutions.

Fourth, we will present and discuss the key features of the
Singular Value Decomposition (SVD) framework and its
robustness in solving rank-deficient problems.

Finally, we will see that under certain circumstances the
normal equations method and the SVD may be more applicable
than the QR approach. Of course, such circumstances
depends heavily on the underlying problem at hand as well as
of the available computational tools and our own real time to
handle reliable answers linked to the data in our disposal.
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Computing the solution to Least Squares Problems

Existence and Uniqueness
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Computing the solution to Least Squares Problems

Least Squares solution from normal equations
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Computing the solution to Least Squares Problems

Norm and sensitivity/conditioning of the Least Squares Problem
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Computing the solution to Least Squares Problems

The 2-norm linked to an inner product
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Computing the solution to Least Squares Problems

Sensitivity and Conditioning: perturbations to b (linked to Ax = b)
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Computing the solution to Least Squares Problems

Sensitivity to perturbations in A (linked to Ax = b)
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Computing the solution to Least Squares Problems

Complexity of Numerical Algorithms - Normal Equations Method
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Computing the solution to Least Squares Problems

Algorithm: computing the Cholesky factorization
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Computing the solution to Least Squares Problems

Shortcomings of Normal Equations
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Computing the solution to Least Squares Problems

Orthogonal Methods - The QR Factorization
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Computing the solution to Least Squares Problems

Orthogonal Matrices and Methods - The QR Factorization
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Computing the solution to Least Squares Problems

The QR factorization in Least Squares problems
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Computing the solution to Least Squares Problems

The QR factorization in Least Squares problems

Remark (Gram-Schmidt equals QR): See 3.4 The Gram-Schmidt
Process (David S Watkins’ book, 3rd) in which it is possible to show
that the QR decomposition follows directly from the Gram-Schmidt
equations.
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Computing the solution to Least Squares Problems

Calculating the QR-factorization - Householder Transformations
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Computing the solution to Least Squares Problems

Rank Deficiency: Numerical Loss of Orthogonality
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Rank Deficiency: Numerical Loss of Orthogonality

From the David S Watkins’ book 3rd (Chapter 4, page 259): The
QR decomposition is a fine tool for solving least squares problems
when the coefficient matrix is known to have full rank. However, if the
matrix does not have full rank, or if the rank is unknown, a more
powerful tool is needed. One such tool is the QR decomposition with
column pivoting, which we discussed in Section 3.3. In this chapter
we introduce an even more powerful tool: the singular value
decomposition (SVD). This may be the most important matrix
decomposition of all, for both theoretical and computational purposes.
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Computing the solution to Least Squares Problems

Singular Value Decomposition (SVD)
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58 / 1



Computing the solution to Least Squares Problems
Singular Value Decomposition - The main idea behind the SVD
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Computing the solution to Least Squares Problems

The Minimum Norm Solution using SVD
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Computing the solution to Least Squares Problems

Computing the SVD of Matrix A - Comparison of Methods
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