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SUMMARY QR and SVD:
Numerical Methods for Least Squares Problems

MOTIVATION:

Computing the solution to Least Squares Problems is of great
importance in a wide range of fields ranging from numerical
linear algebra to econometrics, optimization as well as
engineering and applied sciences, just to name a few list.

Here we are going to present a set of numerically stable and
computationally efficient algorithms for computing the solution
to Least Squares Problems.

In order to evaluate and compare the stability and efficiency of
the proposed algorithms, key issues on the theoretical
complexities and numerical results have been highlighted.



Here we are following the references:

David S. Watkins, Fundamentals of Matrix Computations, New
Jersey: John Wiley & Sons (3 ed., 2010).

Gene Golub and Charles Van Loan. Matrix computations, 3rd ed.,
Johns Hopkins Univ. Press (1996).

Roger Horn and Charles Johnson. Matrix analysis, Cambridge, MA,
Cambridge Univ. Press (1985).



Computing the solution to Least Squares Problems

Suppose we are given a set of observed values § and ag,...,a,. Suppose the
variable (3 is believed to have a linear dependence on the variables oy, ... , a,. Then
we may postulate a linear model

B=xzi00 + ...+ Tphay,.

Our goal is to determine the unknown coefficients zi,... ,x, so that the linear
model is a best fit to our observed data. Now consider a system of m linear equations
with n variables:

a11r1 +aiers + ...+ apTy, = b1

a21r1 + a292 + ... + agpTy = b2

A1 %1 + Om2Z2 + . ..+ GmnTn = by



Computing the solution to Least Squares Problems

(1171 + @12%2 + . .. + A1, Ty, = by
ao1x1 + 209 + ... + aopxy = bo

Am1T1 + GmaTa + ...+ GpnTn = by,

Then we obtain an overdetermined linear system Az = b, with m x n matrix
A, where m > n. Since equality is usually not exactly satisfiable when m > n,
the Least Squares Solution x minimizes the squared Euclidean norm of the residual
vector r(z) = b — Az so that

(1.1) min||'r(at)|\§ :mingfA:z:Hg



Computing the solution to Least Squares Problems

In this brief note, numerically stable and computationally
efficient algorithms for solving Least Squares Problems will be
considered as follows:

First, we will review basic the tools of orthogonality, norms, and
conditioning which are necessary for understanding the
numerical algorithms introduced in the following sections.

Second, the role of normal equations method using Cholesky
factorization will be discussed, taking into account the issues:
Flop complexity of numerical algorithms linked to computing the
Cholesky Factorization and possible shortcomings of the
normal equations approach.
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Third, we will see that the QR Factorization generates a more
stable and accurate solution than the previous normal
equations approach, making it one of the most important tools
in computing Least Squares solutions.

Fourth, we will present and discuss the key features of the
Singular Value Decomposition (SVD) framework and its
robustness in solving rank-deficient problems.

Finally, we will see that under certain circumstances the
normal equations method and the SVD may be more applicable
than the QR approach. Of course, such circumstances
depends heavily on the underlying problem at hand as well as
of the available computational tools and our own real time to
handle reliable answers linked to the data in our disposal.



Computing the solution to Least Squares Problems

Existence and Uniqueness

Here , we will see that the linear Least Squares Problem Ax = b always
has a solution, and this solution is unique if and only if the columns of A are linearly
independent, i.e., rank(A) = n, where A is an m xn matrix. If rank(A) < n, then A
is rank-deficient, and the solution is not unique.

Definition 2.1. Let S C R™. The orthogonal complement of S, denoted as S| , is
the set of all vectors x € R™ that are orthogonal to S.

One important property of orthogonal complements is the following:
R"=V® Vi,
where & is the direct sum, which means that any vector x € R™ can be uniquely
represented as
r=p+o,

where p € V and o € V. Then p is called the orthogonal projection of the vector
2 onto the subspace V. As a result, we have the following lemma:
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Existence and Uniqueness

Lemma 2.2. Let V C R™. Let p be the orthogonal projection of a vector x € R™
onto V. Then, ||z —v| > ||z —p|| for anyv #peV.

Proof. Let o =2 —p, o =x —v,and v =p—v. Then o’ = o+ v, v’ € V, and
v" # 0. Since 0LV it follows that o -v' = 0. Thus,

[0 =00 = (04+1) - (0+v)=0-0+v" -0+0- v+ -V
=0-04v -0 = ol + [[v'[|* > [|o]*.

Thus ||z —p|| = mi‘r/l ||z — v is the shortest distance from the vector z to V. O
ve
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Least Squares solution from normal equations

2.1. Least Squares Solution from Normal Equations. Recall from (1.1) that
the Least Squares Solution x minimizes ||r(z)||?, where r(z) = b — Az for x € R™.
The dimension of span(A) is at most n, but if m > n, b generally does not lie in
span(A), so there is no exact solution to the Least Squares Problem. In our next
theorem, we will use Lemma 2.2 to see that Az € span(A) is closest to b when
r = b— Az is orthogonal to span(A), giving rise to the system of Normal Equations
AT Az = AT,
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Least Squares solution from normal equations

Theorem 2.3. Let A be an m X n matriz and b € R™. Then T is a Least Squares
Solution of the system Ax = b if and only if it is a solution of the associated normal
system AT Ax = ATb.

Proof. Let x € R™. Then Ax is an arbitrary vector in the column space of A, which
we write as R(A). As a consequence of Lemma 2.2, r(x) = b — Az is minimum if
Az is the orthogonal projection of b onto R(A). Since R(A)*+ = Null(AT), & is a
Least Squares Solution if and only if

ATr(z) = AT(b— Az) =0,
which is equivalent to the system of Normal Equations
AT Az = AT
|

For this solution to be unique, the matrix A needs to have full column rank:
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Least Squares solution from normal equations

Theorem 2.4. Consider a system of linear equations Ax = b and the associated
normal system AT Ax = ATb. Then the following conditions are equivalent:

(1) The Least Squares Problem has a unique solution
(2) The system Az =0 only has the zero solution
(8) The columns of A are linearly independent.

Proof. Let & be the unique Least Squares Solution and # € R™ is such that AT Az =
0. Then
ATA(G 4 2) = AT Az = ATb.

Thus z + x = & i.e., x = 0 since the normal system has a unique solution. Also,
this means that A” Az = 0 only has the trivial solution, so AT A is nonsingular
(AT A is nonsingular if and only if AT Av # 0 for all non-zero v € R™).

Now it is enough to prove that (AT A) is invertible if and only if rank(A) = n. For
v € R", we have vT (AT A)v = (vT AT)(Av) = (Av)T(Av) = ||Av||3, so AT Av # 0

if and only if Av # 0. For 1 < i < n, denote the i-th component of v by v; and
the i-th column of A by a;. Then Aw is a linear combination of the columns of
A, the coefficients of which are the components of v. It follows that Av # 0 for
all non-zero v if and only if the n columns of A are linearly independent, i.e., A is
full-rank. O
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Norm and sensitivity/conditioning of the Least Squares Problem

This section will first justify the choice of the Euclidean 2-norm from our in-
troduction in (1.1). Then we will see how this choice of norm is closely linked to
analyzing the sensitivity and conditioning of the Least Squares Problem.

3.1. Norms: Quantifying Error and Distance. A norm is a function that
assigns a positive length to all the vectors in a vector space. The most common
norms on R" are

(1) The Euclidean norm: ||z|j2 = (32 |z[?)'/2,

=1
(2) The p-norm: ||z|, = (Z |z|P)1/? for p > 1, and

(3) The Infinite norm: H:v||Oo = [max |z;].
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Norm and sensitivity/conditioning of the Least Squares Problem
(1) The Euclidean norm: ||z||2 = (i ||?)/2,
=1
(2) The p-norm: ||z|, = (Z |z|P)1/? for p > 1, and

(3) The Infinite norm: H:v||Oo = [max |z;].

Given so many choices of norm, it is natural to ask whether they are in any way
comparable. It turns out that in finite dimensions, all norms are in fact equivalent
to each other. The following theorem allows us to generalize Euclidean spaces to
vector spaces of any finite dimension.
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Norm and sensitivity/conditioning of the Least Squares Problem

Theorem 3.1. If S is a vector space of finite dimension, then all norms are equiv-
alent on S i.e., for all pairs of norms || - ||n, || - |lm, there exist two constants ¢ and
C such that 0 < ¢ < C, and Vx € S, we have

cllelln < llzllm < Cll]n

Proof. Tt is enough to show that any two norms are equivalent on the unit sphere
of a chosen norm, because for a general vector z € R™, we can write z = ~yxo,

where v = ||z]|, and z( is a vector on the unit sphere. We first prove that any
norm is a continuous function: Suppose that zg € R™. Then for every x € R", the
triangle inequality gives |||z|| — ||zol|| < || — zo||. Thus |||z| — ||zol|| < € whenever

|z — zo|| < e.
For simplicity, we work in the case n = 2. For the second inequality, let {e;} be
the canonical basis in R™. Then write x = ) z;¢; so that
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Norm and sensitivity/conditioning of the Least Squares Problem

For simplicity, we work in the case n = 2. For the second inequality, let {e;} be
the canonical basis in R"™. Then write x = > x;e; so that

2
el < S lzillleillm < /3 2:2y/3 lleilin® = Cllz]l2

For the first inequality, by using continuity on the unit sphere, it can be shown
that the function z — ||z||,;, has a minimum value ¢ on the unit sphere. Now write
z = ||z||2Z so that

[€llm = [lzll2llZ]lm > cll]2.
O
With the equivalence of norms, we are now able to choose the 2-norm as our tool

for the Least Squares Problem: solutions in the 2-norm are equivalent to solutions
in any other norm.
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The 2-norm linked to an inner product

The 2-norm is the most convenient one for our purposes because it is associated
with an inner product. Once we have an inner product defined on a vector space,
we can define both a norm and distance for the inner product space:

Definition 3.2. Suppose that V' is an inner product space. The norm or length of
a vector u € V is defined as .
l[ull = (u, u)?.
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The 2-norm linked to an inner product

Definition 3.2. Suppose that V' is an inner product space. The norm or length of
a vector u € V is defined as )
l[ull = (u, u)?.

The equivalence of norms also implies that any properties of accuracy and sta-
bility are independent of the norm chosen to evaluate them. Now that we have
a means of quantifying distance and length, we have the tools for quantifying the
error for our Least Squares Solutions.
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The 2-norm linked to an inner product

3.2. Sensitivity and Conditioning: Perturbations to b. In general, a non-
square m X n matrix A has no inverse in the usual sense. But if A has full rank, a
pseudoinverse can be defined as

(3.3) AT = (ATA)7AT,
and condition number k(A) by
(3.4) K(A) = [l Al - [ A7

Combined with Theorem 2.3, the Least Squares Solution of Az = b can be given
by z = ATh. We will soon see that if x(A) > 1, small perturbations in A can lead
to large errors in the solution.

Systems of linear equations are sensitive if a small perturbation in the matrix
A or in the right-hand side b causes a significant change in the solution x. Such
systems are called ill-conditioned. The following is an example of an ill-conditioned
matrix with respect to perturbations on b.

20/1
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Sensitivity and Conditioning: perturbations to b (linked to Ax = b)
Example 3.5. The linear system Az = b, with

1 1 2
A=l aid o=
where 0 < € < 1 has the solution z = [2 O]T. We claim this system is ill-

conditioned because small perturbations in b alter the solution significantly. If we
compute the system AZ = b, where

- 2
b= [2 + e]
we see this has the solution = [1 I]T, which is completely different from .

One way to determine sensitivity to perturbations of b is to examine the relation-
ship between error and the residual.

21/
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Sensitivity and Conditioning: perturbations to b (linked to Ax = b)

One way to determine sensitivity to perturbations of b is to examine the relation-
ship between error and the residual. Consider the solution of the system Ax = b,
with expected answer x and computed answer Z. We will write the error e and the
residual r as )

e=z—T, r=b—At=b-0b.

Since x may not be obtained immediately, the accuracy of the solution is often
evaluated by looking at the residual

r=b— A% = Ax — Az = Ae
We take the norm of e to get a bound for the absolute error

lellz = llz = &l = [|AT (b = B)ll2 < [|AT[|21b = Bll2 = [[A™ [l2]l7|2
SO

lell2 < 1A™ 27 l2-

22/1
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Sensitivity and Conditioning: perturbations to b (linked to Ax = b)

Using this we can derive a bound for the relative error |le||2/||z]|2 and ||r||2/]|b]2:

Z||2 |7" |2
lells < 1A% el T2 < g g 1712,
ol ol
Thus
(36) HGHQ < I{(A)HTHZ

ll=ll2 ~ loll2”

If k(A) is large (i.e., the matrix is ill-conditioned), then relatively small pertur-
bations of the right-hand side b (and therefore the residual) may lead to even larger
€rTors.

23
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Sensitivity and Conditioning: perturbations to b (linked to Ax = b)

For well-conditioned problems (x(A) ~ 1) we can derive another useful

bound:
I7llzllzll2 = |Aell2llz]l2 = [|Aell2[[ATDl2 < [[All2llell2[|AT[I2[b]l2
so that
1
(37) HTHZ < H€H2

&(A) [[bll2 ~ ll=fl2”
Finally, combine (3.6) and (3.7) to obtain

<z =22 [I7[l2

RA ol = Tl =Wl

24/1
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Sensitivity and Conditioning: perturbations to b (linked to Ax = b)

These bounds are true for any A, but show that the residual is a good indicator
of the error only if A is well-conditioned. The closer x(A) is to 1, the smaller the

bound can become. On the other hand, an ill-conditioned A would allow for large
variations in the relative error.

25/1
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Sensitivity to perturbations in A (linked to Ax = b)

3.3. Sensitivity to perturbations in A. Small perturbations on ill-conditioned
matrices can lead to large changes in the solution.

Example 3.8. For the linear system Az = b, let
_|1+e 1—€ I
A= [1—6 1+e}’ Ad = {e —e}
with 0 < € < 1. Then consider the perturbed matrix

A 11
ieaanc] .

Ais singular, so A% = b has no solution.

26/1
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Sensitivity to perturbations in A (linked to Ax = b)

Consider the linear system Az = b, but now A is perturbed to A=A+ AA
Denote by x the exact solution to Az = b, and by & the solution to the perturbed
Least Squares Problem Az = b. Now we can write & = = + Ax so that

Az = (A+AA)(z+ Az) =b

so that
Az — b+ (AA)z + A(Az) + (AA)(Az) =0
The term (AA)(Az) is negligibly small compared to the other terms, so we get

(Az) = —AT(AA)x.

27/

1
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Sensitivity to perturbations in A (linked to Ax = b)
Taking norms leads to the following result:

[AA]l2

|Azlz < |4 2llAAlallalla = A7 2l Al

[E4p

or
Iz — [ 1A~ Al
<k
Era P

28/
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Complexity of Numerical Algorithms - Normal Equations Method

From Theorem 2.3, we have seen that finding the Least Squares Solution can be
reduced to solving a system of Normal Equations AT Az = ATb. The Normal Equa-
tions Method computes the solution to the Least Squares Problem by transforming
the rectangular matrix A into triangular form.

4.1. Cholesky Factorization. If A has full column rank, then the following holds
for AT A:

(1) AT A is symmetric (ATA)T = AT(AT)T = AT A)
(2) AT A is positive definite (7 AT Az = (Az)T Az = ||Az|2 > 0 if z # 0).

29/1
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Complexity of Numerical Algorithms - Normal Equations Method

4.1. Cholesky Factorization. If A has full column rank, then the following holds
for AT A:

(1) AT A is symmetric ((ATA)T = AT(AT)T = AT A)
(2) AT A is positive definite (27 AT Azx = (Az)T Az = ||Az||2 > 0 if = # 0).

Thus, if an m x n matrix A has rank n, then ATA is n x n, symmetric, and
positive definite. In this case it is favorable to use the Cholesky Factorization, which
decomposes any positive definite symmetric matrix into two triangular matrices so
that AT A can be expressed as

ATA=LL"

where L is an n x n lower triangular matrix.

30/1
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Complexity of Numerical Algorithms - Normal Equations Method

4.2. Flop: Complexity of Numerical Algorithms. Triangular matrices are
used extensively in numerical algorithms such as the Cholesky or the QR Factor-
ization because triangular systems are one of the simplest systems to solve. By
deriving the flop count for triangular system solving, this section introduces flop
counting as a method of evaluating the performance of an algorithm.

A flop is a floating point operation (4, —, X, /). In an n x n unit lower triangular
system Ly = b, each yi in y is obtained by writing

k=1
e =br — Y _ iy,
J=1

which requires k& — 1 multiplications and k — 1 additions. Thus y requires n? — n

flops to compute. Since n is usually sufficiently large to ignore lower order terms,
we say that an n-by-n forward substitution costs ~ n? flops.

31/



Computing the solution to Least Squares Problems

Complexity of Numerical Algorithms - Normal Equations Method

A flop is a floating point operation (4, —, X, /). In an n x n unit lower triangular
system Ly = b, each yi in y is obtained by writing

k-1
Yk = b — Z lkjys
=1

which requires £ — 1 multiplications and k — 1 additions. Thus y requires n?> —n

flops to compute. Since n is usually sufficiently large to ignore lower order terms,
we say that an n-by-n forward substitution costs ~ n? flops.

When a linear system is solved by this algorithm, the arithmetic associated with
solving triangular system is often dominated by the arithmetic required for the fac-
torization. We only worry about the leading-order behaviors when counting flops;
i.e., we assume m,n are large. Keeping this in mind, we will examine the Cholesky
Factorization used for solving systems involving symmetric, positive definite matri-
ces.

32/1
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Algorithm: computing the Cholesky factorization

4.3. Algorithm: Computing the Cholesky Factorization. For a matrix A,
define A;.;s j.;» to be the (i —i + 1) x (j/ — j + 1) submatrix of A with upper left
corner a;; and lower right corner a; ;.
Algorithm 4.1.
R=A
fork=1tom

forj=k+1tom

Rjjim = Rjjom — R jom Ry /Rick
Ry ieom = R kom /v Rk

33/1
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Algorithm: computing the Cholesky factorization

4.3. Algorithm: Computing the Cholesky Factorization. For a matrix A,
define A;.;7 j.;» to be the (¢ — i+ 1) x (j/ — j + 1) submatrix of A with upper left
corner a;; and lower right corner a; ;.
Algorithm 4.1.
R=A
fork=1tom

forj=k+1tom

Rjjom = Rjjom — R jim Rij [ Rk
Ry ke:m = R kom/V Rk

The 4-th line dominates the operation count for this algorithm, so its flop count
can be obtained by considering

ISP SEUEEEE 9 0ED AL

k=1j=k+1 k=1 j=1

34/1
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Algorithm: computing the Cholesky factorization

Thus we have the following algorithm for the Normal Equations Method:
(1) Calculate C = AT A (C is symmetric, so = mn? flops)
(2) Cholesky Factorization C = LLT (n?/3 flops)
(3) Calculate d = ATb (2mn flops)
(4) Solve Lz = d by forward substitution (n? flops)
(5) Solve LTz = z by back substitution (n? flops)
This gives us the cost for large m,n : mn? + (1/3)n® flops

35
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Shortcomings of Normal Equations

4.4. Shortcomings of Normal Equations. The Normal Equations Method is
much quicker than other algorithms but is in general more unstable.

Example 4.2. Consider the matrix

where 0 < € < 1. Then for very small e,

s M+ 1] 11
AA_{l 1+€2| ’

which is singular.

36/1
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Shortcomings of Normal Equations

4.4. Shortcomings of Normal Equations. The Normal Equations Method is
much quicker than other algorithms but is in general more unstable.

Example 4.2. Consider the matrix

1 1
A=|e 0],
0 €

where 0 < € < 1. Then for very small ¢,

v, [+ 1] 11
AA—[1 1+e) T 1 1)

which is singular.

Conditioning of the system is also worsened: k(AT A) = [k(A)]?, so the Normal
Equations have a relative sensitivity that is squared compared to the original Least
Squares Problem Ax = b. Thus we can conclude that any numerical method using
the Normal Equations will be unstable, since the rounding errors will correspond
to (k(A))? instead of k(A).

37/1
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Orthogonal Methods - The QR Factorization
5. ORTHOGONAL METHODS - THE QR FACTORIZATION

The QR Factorization is an alternative approach that avoids the shortcom-
ings of Normal Equations. For a matrix A € R™*™ with full rank n, let A =

[al az - an] . We wish to produce a sequence of orthonormal vectors ¢1, g2, . . .
spanning the same space as the columns of A:
(51) <ql,... ,qj)=<a1,... ,aj)
for j =1,2,... ,n. This way, for k = 1,...,n, each a; can be expressed as a linear
combination of q1,...,qr. This is equivalent to the matrix form

A=QR

where Q € R™*"™ has orthonormal columns, and R € R™*" is upper triangular. To
understand the factorization we will first introduce some special classes of matrices
and their properties.

38/1
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Orthogonal Matrices and Methods - The QR Factorization

5.1. Orthogonal Matrices. A matrix @ € R™*™ with m > n, has orthonormal
columns if all columns in @) are orthogonal to every other column and are nor-
malized. When m = n so that @ is a square matrix, we can define an orthogonal
matrix:

Definition 5.2. A square matrix with orthonormal columns is referred to as an
orthogonal matrix.

For an orthogonal matrix @, it holds that QTQ = QQT = I,,. From this it is clear
that Q! = @7 and if @ is an orthogonal matrix, then Q7 is also orthogonal. Using
these properties, we will prove the following lemma which shows that multiplying
a vector by an orthogonal matrix preserves its Euclidean norm:

39/1
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Orthogonal Matrices and Methods - The QR Factorization

Lemma 5.3. Multiplying a vector with an orthogonal matrixz does not change its
2-norm. Thus if Q) is orthogonal it holds that

Q|2 = [l]l2-
Proof. [|Qz|3 = (Qx)" Qz = 2TQTQx = 2Tz = |3 O

Norm preservation implies no amplification of numerical error. The greatest
advantage of using orthogonal transformations is in its numerical stability: if @
is orthogonal then x(Q) = 1. It is also clear that multiplying both sides of Least
Squares Problem (1.1) by an orthogonal matrix does not change its solution.

40/

1



Computing the solution to Least Squares Problems

Orthogonal Matrices and Methods - The QR Factorization
5.2. Triangular Least Squares Problems. The upper triangular overdetermined
Least Squares Problem can be rewritten as

R . by

o|" " |ba|”’
where R is an n X n upper triangular partition, the entries of O are all zero, and
b= [bl bz]T is partitioned similarly. Then the residual becomes

7113 = 11y — Rell3 + [[b2[3-
Although ||b3||2 does not depend on z, the first term ||b; — Rz||2 can be minimized
when z satisfies the n x n triangular system
Rx = bl,

which can be easily solved by back substitution. In this case, z is the Least Squares
Solution with the minimum residual

I3 = llb2l3-
Recall that solving Least Squares Problems by Normal Equations squares the
condition number, i.e., k(AT A) = [k(A)]?. Combined with Lemma 5.3, we can con-

clude that the QR approach enhances numerical stability by avoiding this squaring
effect.

41/1
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The QR factorization in Least Squares problems
5.3. The QR Factorization in Least Squares Problems.

Theorem 5.4. Given the matriz A € R™*™ and the right hand side b € R™, the
solution set of the Least Squares Problem

i —A
Jnin [|b— Az|;
is identical to the solution set of
Rz =Q"b

where the m X n matriz Q with orthonormal columns and the upper triangular n X n
matriz R, is a QR-factorization of A.

42/1
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The QR factorization in Least Squares problems

Theorem 5.4. Given the matriz A € R™*™ and the right hand side b € R™, the
solution set of the Least Squares Problem

in ||b— A
Jnin || |2
is identical to the solution set of
Rz =Q"b

where the m xn matriz Q with orthonormal columns and the upper triangular n xXn
matriz R, is a QR-factorization of A.

Proof. Given m x n matrix A with m > n, we need to find an m x m orthogonal
matrix () such that
R

so that when applied to the Least Squares Problem, Ax = b becomes equivalent to

(5.5) O Az — {g] v = [Zj — Qb

43/1
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The QR factorization in Least Squares problems

Proof. Given m x n matrix A with m > n, we need to find an m x m orthogonal
matrix ) such that

R
so that when applied to the Least Squares Problem, Az = b becomes equivalent to
.. [R] ] _ 1
(5.5) QAx—[O T = By =Q'b

where R is n x n and upper triangular. If we partition () as an m X m orthogonal
matrix @ = [Ql QQ], where @7 is m X n, then

A=Q [g} =[Q1 @] [g} =R,

which is called the reduced QR Factorization of A. Then the solution to the Least
Squares Problem Ax = b is given by solution to square system

QT Az =Rr=b, =Q,"b
So the minimum value of ||b — Az||3 is realized when ||Q,7b — Rz|? = 0, i.e. when
Qb —Rxr=0 O
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The QR factorization in Least Squares problems

Although we have shown that QR is an efficient, accurate way to solve Least
Squares, exhibiting the QR Factorization is quite a different matter. A standard
method of obtaining a QR Factorization is via Gram-Schmidt orthogonalization.
Although this can be implemented numerically, it turns out not to be as stable as
QR via Householder reflectors, and thus we choose to focus on the latter method.
Finally, the Least Squares Problem can be solved by the following algorithm:
(1) QR Factorization of A (Householder or Gram-Schmidt ~ 2mn? flops)
(2) Form d = QTb (2mn flops)
(3) Solve Rx = d by back substitution (n? flops)

This gives us the cost for large m, n : 2mn? flops

Remark (Gram-Schmidt equals QR): See 3.4 The Gram-Schmidt
Process (David S Watkins’ book, 3rd) in which it is possible to show
that the QR decomposition follows directly from the Gram-Schmidt
equations.
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Computing the solution to Least Squares Problems

Calculating the QR-factorization - Householder Transformations

5.4. Calculating the QR-factorization - Householder Transformations.
This section gives a rough sketch on how to calculate the QR-factorization in a
way that is numerically stable.

The main idea is to multiply the matrix A by a
sequence of simple orthogonal matrices @) in order to "shape” A into an upper
triangular matrix Q- --Q2Q;.

In the k-th step, the matrix @} introduces zeroes
below the diagonal in the k-th column while keeping the zeroes in previous rows.
By the end of the n-th step, all the entries below the diagonal become zero, making
QT = Q- @Q2Q1A = R upper triangular.
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Computing the solution to Least Squares Problems

Calculating the QR-factorization - Householder Transformations

In order to construct the matrix Q7, choose each orthogonal matrix @y such

that
I 0

where I is a k — 1 x k — 1 identity matrix and F isan m —k+ 1 x m — k + 1 ma-
trix.
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Calculating the QR-factorization - Householder Transformations

In order to construct the matrix Q7, choose each orthogonal matrix @) such

that
I 0
where [ is a k — 1 X k — 1 identity matrix and F isanm — k+1 xm — k + 1 ma-

trix.

The identity matrix in @) allows us to preserve the zeroes already introduced

in the first £ — 1 columns, while F' introduces zeroes below the diagonal in the k-th
column.
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Calculating the QR-factorization - Householder Transformations

In order to construct the matrix Q7, choose each orthogonal matrix @) such

that
I 0

where [ is a k — 1 X k — 1 identity matrix and F isanm —k+1 xm — k + 1 ma-
trix.

The identity matrix in @) allows us to preserve the zeroes already introduced

in the first £ — 1 columns, while F' introduces zeroes below the diagonal in the k-th
column.

Now let x € Rm_k+1. We define F' as the Household R(;ﬂector, which is
chosen as

T
v
F == I - zm,
where v = ||z||e1 — .
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Calculating the QR-factorization - Householder Transformations

Now let € R™ %+l We define F as the Household Reflector, which is

chosen as
T
VU
F=1-2—,
vy

where v = ||z|le; — z. This achieves
[HZEH-I
0

Fx = = |z |lex.
0
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Computing the solution to Least Squares Problems

Calculating the QR-factorization - Householder Transformations

After A has been reduced to upper triangular form QT A = R, the orthogonal
matrix @ is constructed by directly computing the formula

QT =Qn Q1= Q=Q1 Qn.

As this process is repeated n times, each process works on smaller blocks of the
matrix while deleting the entries below the diagonal in the next column. Each
Householder transformation is applied to entire matrix, but does not affect prior
columns, so zeros are preserved.
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Calculating the QR-factorization - Householder Transformations

In order to achieve the operation count, we take advantage of the matrix-vector
multiplications rather than the full use of matrix multiplication. In other words,
we perform
v(vT A)

vTy

T
(1—2:;—1))A:A—2

which consists of a matrix-vector multiplication and an outer product. Compared
to the Cholesky Factorization, applying the Householder transformation this way
is much cheaper because it requires only vector v, rather than the full matrix F.
Repeating this process n times gives us the Householder algorithm:
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Computing the solution to Least Squares Problems

Calculating the QR-factorization - Householder Transformations
Algorithm 5.6.
fork=1ton

vV = Apim,k

up =v — ||v]ler

ug = up/ |||

Ak:m,k:n = Ak:m,k:n - 2uk (ukTAk:m,k:n)

Most work is done by the last line in the loop: Ag.m k:in = Akim kin —2Uk (ukTAk;mykm
which costs 4(m — k + 1)(n — k + 1) flops. Thus we have

Total flops ~ 24(771 —k+1D)(n—k+1)=2mn?—2n3/3
k=1

53/1



Computing the solution to Least Squares Problems

Rank Deficiency: Numerical Loss of Orthogonality

5.5. Rank Deficiency: Numerical Loss of Orthogonality. We have assumed
so far that the matrix A has full rank. But if A is rank-deficient, the columns A
would be linearly dependent, so there would be some column a; in A such that
a; € span{qi,...,qj—1} = span{ai,... ,a;_1}. In this case, from 5.1 we can see
that the QR Factorization will fail. Not only that, when a matrix is close to rank-
deficient, it could lose its orthogonality due to numerical loss. Consider a 2 x 2

matrix
~10.70000 0.70711

~10.70001 0.70711

It is easy to check that A has full rank. But with a 5-digit accuracy of the problem,
after computing the QR Factorization we see that @ is not orthogonal.

A
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Rank Deficiency: Numerical Loss of Orthogonality

If such a @ is used to solve the Least Squares Problem,
the system would be highly sensitive to perturbations. Nevertheless, a minimum
norm solution can still be computed with the help of Singular Value Decomposition
(SVD), which will be covered next.

From the David S Watkins’ book 3rd (Chapter 4, page 259): The
QR decomposition is a fine tool for solving least squares problems
when the coefficient matrix is known to have full rank. However, if the
matrix does not have full rank, or if the rank is unknown, a more
powerful tool is needed. One such tool is the QR decomposition with
column pivoting, which we discussed in Section 3.3. In this chapter
we introduce an even more powerful tool: the singular value
decomposition (SVD). This may be the most important matrix
decomposition of all, for both theoretical and computational purposes.

55

/1



Computing the solution to Least Squares Problems

Singular Value Decomposition (SVD)

If the QR Factorization used orthogonal transformations to reduce the Least
Squares Problem to a triangular system, the Singular Value Decomposition uses

orthogonal transformations to reduce the problem into a diagonal system. We first
introduce the Singular Value Decomposition.

Theorem 6.1. Let A be an arbitrary m x n matriz with m > n. Then A can
be factorized as A = ULVT, where U € R™™ and V € R" ™ are orthogonal
matrices, and L = diag(oy,... ,0,), where o1 > ... > g, > 0.
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Singular Value Decomposition (SVD)
Theorem 6.1. Let A be an arbitrary m X n matriz with m > n. Then A can

be factorized as A = ULVT, where U € R™™ and V € R™ " are orthogonal
matrices, and ¥ = diag(oy,... ,0,), where oy > ... > 0, > 0.

Proof. Let 01 = ||A]l2. Choose vi € R™ and u;’ € R™ such that |v1]]2 = 1,
|lur’||l2 = o1 and w1’ = Avy. Then normalize uy’ as u; = uy’/||u1’||2- To form the
orthogonal matrices Uy and Vi, extend v1 and u; to some orthonormal bases {v;}
and {u;} as the orthogonal columns of each matrix. Then we have

T

(6.2) U,TAV, = § = [‘g “jg} .
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Singular Value Decomposition (SVD)
Then it suffices to prove that w = 0. Consider the inequality

g1 wT g1
0 B||w

which gives us ||S||z > (012 + w?)"/2. But since U; and V; are orthogonal, from

(6.2) we have ||S||2 = o1, which makes w = 0.

Now proceed by induction. If n = 1 or m = 1 the case is trivial. In other cases,

the submatrix B has an SVD B = UyZ, Vs T by the induction hypothesis. Thus we
obtain the SVD of A in the following form:

T
o[t o0lfer o]t 0] ¢
a=a) f 2R o'

>0 +w? = (017 + w?) 2 ["1] ll2
5 w
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Singular Value Decomposition - The main idea behind the SVD

Then it suffices to prove that w = 0. Consider the inequality

5 5[

which gives us ||S|l2 > (012 + w?)Y/2. But since U; and Vi are orthogonal, from
(6.2) we have ||S||2 = o1, which makes w = 0.

Now proceed by induction. If n = 1 or m = 1 the case is trivial. In other cases,
the submatrix B has an SVD B = U,Z,V5” by the induction hypothesis. Thus we
obtain the SVD of A in the following form:

T
M1 0)fer 0]t 0] 1
a=aly g5 2l vl v
0

The main idea behind the SVD is that any matrix can be transformed into a
diagonal matrix if we choose the right orthogonal coordinate systems for its domain
and range. So using the orthogonality of V' we can write the decomposition in the
form

g
> 012 4 w? = (012 +w?) V2| L;] ll2

2

AV =UL.
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Computing the solution to Least Squares Problems

The Minimum Norm Solution using SVD

6.1. The Minimum Norm Solution using SVD. If rank(A) < n, Theorem
2.4 tells us that the solution to the Least Squares Problem may not be unique,
i.e., multiple vectors = give the minimum residual norm. Of course, rank deficiency
should not happen in a well-formulated Least Squares Problem: the set of variables
used to fit the data should be independent in the first place. In the case when A
is rank-deficient, we can still compute the Least Squares Solution by selecting the
solution & that has the smallest norm among the solutions.
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The Minimum Norm Solution using SVD

We begin with the pseudoinverse AT from (3.3) redefined in terms of the SVD:
At =vztuT

where £t = diag(o171,... ,0,7!). Note that this pseudoinverse exists regardless

of whether the matrix is square or has full rank. To see this, suppose A = ULVT

is the SVD of A € R™. For rank-deficient matrices with rank(A) = r < n, we have

0 O

with U and V' partitioned accordingly as U = [U; U] and V = [Vi  Va]. The
pseudoinverse AT is given by

Z:{zl 0}, Yy =diag(oy,...,0p), o01>-->0,>0,

1
AT =vItuT =wviZ, 'y T,  where It = {Zl 0]

0 0
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The Minimum Norm Solution using SVD

Since Z; is nonsingular, AT always exists, and it can be easily confirmed that
AAT = AT A = I. Now write ¢ and y as

I L I L A R I
c=U"b= [UQTb o C2 ’ vy= Vie= V2TQZ a Y2
Apply the orthogonality of U and the SVD of A to the Least Squares Problem:

2
c1— Ly
C2

Ib— Az|)3 = |UUT0 — USV x| = ‘ = ller = Zay 3 + lleall-
so that we have ||b — Az|2 > ||c2]|2 Yz € R™. Equality holds when

2

Z;1C1 +
z=Vy=[Vi V] " =ATb+ Vays

for any y2 € R"", making = the general solution of the Least Squares Problem.

62/

1



Computing the solution to Least Squares Problems

The Minimum Norm Solution using SVD

Note that the solution is unique when r = rank(A) = n, in which case V1 = V. On
the other hand, if A is rank-deficient (r < n), we write z as

—1
z=Vy=[Vi Vi [Zlyjl} = ATb + Vays

for some nonzero y,. Let £ = A™b, i.e., the solution when y, = 0.
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Computing the solution to Least Squares Problems

The Minimum Norm Solution using SVD

Note that the solution is unique when r = rank(A) = n, in which case V1 = V. On
the other hand, if A is rank-deficient (r < n), we write z as

-1
c=Vy=[ V] Flyzcl} = A%b 4 Vi,

for some nonzero y,. Let £ = A1), i.e., the solution when y5 = 0. Then
213 = 1 A7B13 + lly2ll3 > [l=13

so that the vector z = Atb = Vl):flUlT b is the minimum norm solution to the
Least Squares Problem. Thus the minimum norm solution to the Least Squares
Problem can be obtained through the following algorithm:

(1) Compute A=ULVT = U;£; VT, the SVD of A

(2) Compute UTb

(3) Solve Lw = UTb for w (Diagonal System)

(4) Let z =Vuw
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Computing the solution to Least Squares Problems

The Minimum Norm Solution using SVD

Note that the solution is unique when r = rank(A) = n, in which case V; = V. On
the other hand, if A is rank-deficient (r < n), we write z as

-1
Z=Vy= [Vl ‘/2} |:ZlyzC1:| :A+b+V2y2

for some nonzero y,. Let £ = A1), i.e., the solution when y = 0. Then
1213 = IIA*BII3 + a1l > 3
so that the vector z = ATb = V1 Z 1U1T b is the minimum norm solution to the

Least Squares Problem. Thus the minimum norm solution to the Least Squares
Problem can be obtained through the following algorithm:

(1) Compute A =UZVT = U, VT, the SVD of A
(2) Compute UTb

(3) Solve Lw = UTb for w (Diagonal System)

(4) Let z =Vuw

The power of the SVD lies in the fact that it always exists and can be computed
stably. The computed SVD will be well-conditioned because orthogonal matrices
preserve the 2-norm. Any perturbation in A will not be amplified by the SVD since
[6All2 = [6Z]|2.
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Computing the SVD of Matrix A - Comparison of Methods

6.2. Computing the SVD of Matrix A. There are several ways to compute the
SVD of the matrix A. First, the nonzero Singular Values of A can be computed
by an eigenvalue computation for the normal matrix AT A. However, as we have
seen in the conditioning of Normal Equations, this approach is numerically unstable.
Alternatively, we can transform A to bidiagonal form using Householder reflections,
and then transform this matrix into diagonal form using two sequences of orthogonal
matrices. While there are other versions of this method, the work required for
for computing the SVD is typically evaluated to be

~2mn? 4+ 11n3.

The computation of the SVD is an interesting subject in itself. Various alterna-
tive approaches are used in practice. Some methods emphasize speed (such as the
divide-and-conquer methods), while others focus on the accuracy of small Singular
Values (such as some QR implementations) . But in any case, once it has been
computed, the SVD can be a powerful tool in itself.
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Computing the SVD of Matrix A - Comparison of Methods

So far, we have seen three algorithms for solving the Least Squares Problem:

(1) Normal equations by Cholesky Factorization costs ~ mn? + n3/3 flops.
It is the fastest method but at the same time numerically unstable.

(2) QR Factorization costs ~ 2mn? — 2n3/3 flops.
It is more accurate and broadly applicable, but may fail when A is nearly
rank-deficient

(3) SVD costs ~ 2mn? + 11n3 flops.
It is expensive to compute, but is numerically stable and can handle rank
deficiency
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Computing the SVD of Matrix A - Comparison of Methods

If m ~ n, (1) and (2) require about same amount of work. If m > n, the
QR method requires about twice as much work as Normal Equations. But the
error for the Normal Equations Method produces solutions whose relative error is
proportional to [x(A)]2. The Householder QR method is more accurate and more
widely used than the Normal Equations, but these advantages may not be worth
the additional cost when the problem is well conditioned.

The SVD is more stable and robust than the QR approach, but requires more
computational work. If m > n, then the work for QR and SVD are both dominated
by the first term, 2mn?, so the two methods cost about the same amount of work.

However, when m ~ n the cost of the SVD is roughly 10 times that of the QR-
factorization.
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