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1. Introduction, Notation and Basic Terms

 The CG is one of the most popular iterative methods for solving
large systems of linear equations

Ax=b

which arise in many important settings, such as finite difference and
finite element methods for solving partial differential equa-tions,
circuit analysis etc.

« |t issuited for use with sparse matrices. If A isdense, the best
choice isto factor A and solve the equation by backsubstitution.

» Thereisafundamental underlying structure for amost all the
descent algorithms: (1) one starts with an initia point; (2) deter-
mines according to afixed rule a direction of movement; (3) mo-ves
In that direction to a relative minimum of the objective function; (4)
at the new point, a new direction is determined and the processis
repeated. The difference between different algorithms depends upon
the rule by which successive directions of movement are selected.



1. Introduction, Notation and Basic Terms (Cont’d)

« A matrix isarectangular array of numbers, called elements.

 The transpose of an mxn matrix A isthe nxmmatrix AT with
elements

8" =g
« Two sguare nxn matrices A and B are similar if thereis anonsin-
gular matrix S such that
B=SAS
« Matrices having asingle row are called row vectors, matrices
having a single column are called column vectors.
Row vector: a=[a,a,...,a]
Column vector: a=(a,a,...,a)

 The inner product of two vectorsiswritten as

n
x'y =YXy,
i—1



1. Introduction, Notation and Basic Terms (Cont’d)

* A matrix is called symmetricif g; = & .
« A matrix is positive definite if, for every nonzero vector x
XTAX >0
« Basic matrix identities: (AB)"=BTAT and (AB)1=B-1A-1
. %A guadratic formis ascalar, quadratic function of a vector with the
orm

f(x) = %XTAX ~b"x+c

» The gradient of aquadratic formis

if(x)

OX1. 1 - 1
f'(X) = ; =—A ' X+=-Ax-Db

O 2 2

———f(X)

OX |,




1. Introduction, Notation and Basic Terms (Cont’d)

 Various quadratic forms for an arbitrary 2x2 matrix:

Positive-definite (a) (b) Negative-definite
matrix matrix
Sngular |ndefinite
positive-indefinite matrix
matrix




1. Introduction, Notation and Basic Terms (Cont’d)
« Specific example of a2x2 symmetric positive definite matrix:

SN

Contours of the
guadratic form

SN

Gradient of
the quadratic form 33‘{{ éé;ééé
<Y1 117 //
Graph of a quadratic form f(x) e b
PrE R » 21:
i
//7% 711110



2. Eilgenvalues and Eigenvectors

* For any nxn matrix B, ascalar A and a nonzero vector v that satisfy
the equation

Bv=Av
are said to be the eigenvalue and the eigenvector of B.
o If the matrix is symmetric, then the following properties hold:
(@) the eigenvaluesof B arereal

(b) eigenvectors associated with distinct eigenvalues are
orthogonal

« The matrix B is positive definite (or positive semidefinite) if and
only if all eigenvalues of B are positive (or nonnegative).

« Why should we care about the elgenval ues? Iterative methods often
depend on applying B to a vector over and over again:

(a) If |A|<1, then B'v=Alv vanishes asi approaches infinity
(b) If A]>1, then B'v=Alv will grow to infinity.



2. Elgenvalues and Eigenvectors (Cont’d)
« Examplesfor |A|l<1land |A| >1

v A=-0.5

3
Bv B v

A + B3x “~ ?\41:0.7
"¢ ., 7\‘/




2. Eilgenvalues and Eigenvectors (Cont’d)

« Example: The Jacobi Method for the solution of Ax=b
- split the matrix A such that A=D+E

- Instead of solving the system Ax=Db, one solves the modifi-
ed system x=Bx+z, where B=-D-E and z=D-1b
- Theiterative method is: X;,3)= BX;+z, or
It terms of the error vector: g;,,,= Bey,

- For our particular example, we have that the eigenvalues
and the eigenvectors of the matrix A are:

A=7, v,=[1, 2]T
A=2, V,=[-2,1]"
- The eigenvalues and eigenvectors of the matrix B are:
A=N2/3=-047,  v,=[V2, 1T
A= \2/3=0.47, v,=[-V2, 17




2. Eilgenvalues and Eigenvectors (Cont’d)

 Graphical representation of the convergence of the Jacobi method

©  (a) ()

— S
Eigenvectors of B ﬁ\ 2 Convergence of the
toget_her with their e 2 \ N ﬂ —=*"  Jacobi method which
eigenvalues &7 0 3 Lo startsat [-2,-2] T and
. convergesto [2, -2]T
\ &v

W () EZINC)

x| T

Theerror vector e, * f_ ' o o The error vector e,

‘_._._...
€(0)

Theerror vector g, N

1




3. TheMethod of Steepest Descent

* |n the method of stegpest descent, one starts with an arbitrary point
X(0) and takes a series of steps Xy, X,), ... until we are satis-fied that
we are close enough to the solution.

« When taking the step, one chooses the direction in which f
decreases most quickly, i.e.

—f' (X(I)) =p - AX(i)

 Déefinitions:

 From Ax=Db, it follows that
roy=-Aen=-1"(Xp)

3

Theresidual is actually the direction of steegpest descent



3. The Method of Steepest Descent (Cont’d)

» Start with some vector x ). The next vector falls along the solid line

» The magnitude of the stgﬁ IS d@erml néd with aline search proce-
dure that minimizesf along the line:

Xw _q
do

—f(X(l))—f (X'
~Tyo) =0
T
(b —AX(]_)) r(o) =0
T
(b — A(X(O) + Otr(o) )) r(o) =0
r..r
T T B (o) (0)
r(o)r(o) — OL(Ar(O)) r(o) =0 — o = rT A
) (0)




3. The Method of Steepest Descent (Cont’d)

(€)
(f)

., Bl

Wz &2

\

$ ?

0.2 04 0.6

e

« Geometrical representation




3. TheMethod of Steepest Descent (Cont’d)
» The algorithm

i) =0 —AX)
T \ Two matrix-vector
O multiplications are
) rTAr(i) / required.

X@i+1) =X T %0mla = €+ =€) * %l ()

 To avoid one matrix-vector multiplication, one uses
"+ = T6) ~ %0)ATG)
The disadvantage of using this recurrence is that the residual sequenceis

determined without any feedback from the value of X, so that round-off
errors may cause X, to converge to some point near x.



4. Convergence Analysis of the Method of Steepest Descent

» The error vector €;, Isequal to the
elgenvector v; of A

Gy = AW»— —AV|=—AjV;

\
s

N

&+ = &) T 40 =0

§§§::i

* The error vector g, isalinear combi-
nation of the eigenvectors of A, and all
eigenvalues are the same

\

)y =—AEGy =~ ZE’J}”J j = }”Z‘il j
j=1 =1

i) = T T B+ &) T o0 @) =0

N =)
©




3. TheMethod of Steepest Descent
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3. The Method of Steepest Descent (Cont’d)

» Start with some vector x ). The next vector falls along the solid line

» The magnitude of the stgﬁ IS d@erml néd with aline search proce-
dure that minimizesf along the line:

Xw _q
do
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3. The Method of Steepest Descent (Cont’d)

(€)
(f)

., Bl

Wz &2

\

$ ?

0.2 04 0.6

e

« Geometrical representation




3. The Method of Steepest Descent (Cont’d)

« Summary of the algorithm

i) =b—AXg)
T

- r(i)r(i)
()= 7

r(i)Ar(i)

X(i+1) = Xa) T %)

» To avoid one matrix-vector
multiplication, one uses instead

Fi+2) = iy = OGi)AT Gy

o Efficient implementation of the
method of steegpest descent

<0
r <b-AXx

Schr
2

While i<iyy and 3>¢€9g
g < Ar

O
o= ——

rTq
X< X+ ar
If i isdivisible by 50
r <b-AX
else
r<r-ag
endif
Ser'r

l<i1+1



4. Convergence Analysis of the Method of Steepest Descent

» The error vector €;, Isequal to the
elgenvector v; of A

Gy = AW»— —AV|=—AjV;

\
s

N

&+ = &) T 40 =0

§§§::i

* The error vector g, isalinear combi-
nation of the eigenvectors of A, and all
eigenvalues are the same

\

)y =—AEGy =~ ZE’J}”J j = }”Z‘il j
j=1 =1

i) = T T B+ &) T o0 @) =0

N =)
©




4. Convergence Analysis of the Method of Steepest Descent
(Cont’d)

» Genera convergence of the method can be proven by calculating
the energy norm

27\.2
el -t -l 07, ot <1 (Exf)(z)a !

e For n=2, one has that

2 _q_ (k% +p°)? SK—l
(k+p2)(c +p?)  xk+1

®

K=Amax [ Amin,» H=82/&

Conditioning number



4. Convergence Analysis of the Method of Steepest Descent

’ //////E

(@)
\ I/

(Cont’d)
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5. The Method of Conjugate Directions

« Basicidea « Mathematical formulation:
1. Pick aset of orthogonal 1. For each step we choose a
search directionsd ), dyy, ... , point
d _

(n-) X=X+t gy dgy

2. Take exactly one step in
each search directiontolineup 2. Tofind a ), we use the fact

with X that g, Is orthogonal to d;,
////4 di)ei+1) =0
% d{iy gy + o.yd iy ) =0
| (((( &gy +oydidi =0
\‘\ g = - dg)e(i)
\ d(iyd iy




5. The Method of Conjugate Directions (Cont’d)

» To solve the problem of not knowing &;,, one makes the search
directions to be A-orthogonal rather then orthogonal to each other,

l.e.:
d(Adj =0

(a) | (b)



5. The Method of Conjugate Directions (Cont’d)

» The new requirement is now that g;.,, Is A-orthogonal to d;;,
dXi11)
=0

%f(x(i ) =F' Xiyp) '

r+aydg) =0

diyAe.g) =0

dfyAleg) +aqydgy)=0
dofo

d, Adg)

OL(i) =

If the search vectors were the residuals, this
formulawould be identical to the method of
steepest descent.



5. TheMethod of Conjugate Directions (Cont’d)

» Proof that this process computes x In n-steps

- express the error terms as alinear combination of the search
directions

\
L

©v
v

)
.
vl
©

N PN
(@) (b)



5. TheMethod of Conjugate Directions (Cont’d)

 Calculation of the A-ortogonal search directions by a conjugate
Gram-Schmidth process

1. Take a set of linearly independent vectors ug, Uy, ... , U4

2. Assume that d =u,

3. For 1>0, take an u; and subtracts all the components from it
that are not A-orthogonal to the previous search directions

) =H@ 2 Pida o Pij =T
=0 dgAd(
u d
0 0) d(O)
"o u+ S
wy oL - e

®
*
®



5. TheMethod of Conjugate Directions (Cont’d)

» The method of Conjugate Directions using the axial unit vectors as

basis vectors

—d]

\

AL




5. TheMethod of Conjugate Directions (Cont’d)

 Important observations:

1. The error vector is A-orthogonal to all previous search directions
2. Theresidual vector is orthogonal to all previous search directions
3. Theresidual vector is also orthogonal to all previous basis vectors.

diTAej :—diTrj =—uiTrj =0 for i<]



6. The Method of Conjugate Gradients

« The method of Conjugate Gradients is simply the method of
conjugate directions where the search directions are constructed by
conjugation of the residuals, i.e. u;=r;

« Thisalows usto simplify the calculation of the new search
direction because

‘ T
1 0y ) _ o'
Pij =10 diyAd_gy iy
0 1> ]+1

l=]+1

\

 The new search direction Is determined as alinear combination of
the previous search direction and the new residual

di1) =rgi+n) +Bidg)



6. The Method of Conjugate Gradients (Cont’d)

o Efficient implementation
| <0

r <b-AXx
d<r
T

Onawy &' r

SOCSHG\N

While i<ipmy and Spay > &80
g < Ad

X < X+ ad
If i isdivisible by 50
r <b-AXx

else
r<r-ag

endif

Oold < Onew

Onay < r'r

BC new
Oold
d<r+pd

l<i+1




The Landscape of Ax=Db
Solvers

Direct lterative
A=LU y’ — Ay

More General

Non-
symmetric | Pivoting GMRES,
' LU BICGSTAB,
Symmetric |
nositive | Cholesky | Conjugate
definite gradient
More Robust

More Robust «———) | ess Storage (if sparse)



Conjugate gradient iteration

Xo= 0, =0, dy=r,

for k =1,2,3,...
o = (r" )/ (d" ,Ad,_,) steplength
X, = X1+ oy O g approx solution
= r,— o Ad residual
B= (rTr)/(r" 1r.1) improvement
d =r+p.d_; search direction

* One matrix-vector multiplication per iteration
« Two vector dot products per iteration
* Four n-vectors of working storage



7. Convergence Analysis of the CG Method

« If the algorithm is performed in exact arithmetic, the exact solution
IS obtained in at most n-steps.

* When finite precision arithmetic is used, rounding errors lead to
gradual loss of orthogonality among the residuals, and the finite
termination property of the method islost.

o If the matrix A has only m distinct eigenvalues, then the CG will
converge in at most m iterations

« An error bound on the CG method can be obtained in terms of the

A-norm, and after k-iterations:
k
X=Xy € 2x— x|y | VAT
J(A)+1




8. Complexity of the CG Method

« Dominant operations of Steepest Descent or Conjugate Gradient
method are the matrix vector products. Thus, both methods have
gpatial complexity O(m).

» Suppose that after |-iterations, one requires that |[e;||,<¢||€g)lla
(a) Steepest Descent: 1 < %zcln(%)J
(b) Conjugate Gradient: j < %JE In(%)]
 The time complexity of these two methodsis:
(a) Steepest Descent:  O(mx)
(b) Conjugate Gradient: O(m+/x)

. Stoppl ng criterion: ”r(i)llggllr(O)”



9. Preconditioning Techniques
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9. Preconditioning Technigues (Cont’d)

 Preconditioning is atechnique for improving the condition number
of amatrix. Suppose that M is a symmetric, positive-definite matrix
that approximates A, but is easier to invert. Then, rather than
solving the original system

AX=Db
one solves the modified system
M-tAx=M-1b

» The effectiveness of the preconditioner depends upon the condition

number of M-A.

* Intuitively, the preconditioning is an attempt to stretch the quadratic
form to appear more spherical, so that the eigenvalues become
closer to each other.

e Derivation:
M=EE' EIAE Tx=E, x=E"x



9. Preconditioning Technigues (Cont’d)

 Transformed Preconditioned CG « Untransformed PCG Algorlthm

(PCG) Algorithm

i<0 T<Eb-EIAE % de7F
Sy =TT, 8o < Snaw
While i <iyg and Spay > €250

g<E'AETd

F<Eb-EAE 'R or T =T -0

Oold < Onew

Onew <: FIF

S <:
5o|d

de=7+pd
|l <1+1

r:E1 d=E'd

| <0, r <«b-AX, deMh
While i<img and Spay > £200

qg<Ad

5new

qu

X < X+ad

r<<b-Ax or r<r-aq
Sold < Onew

5new<:rTI\/|'lr
ﬂc5new

Sold
d<:M_1r+/5’d
| <1+1

o <—



9. Preconditioning Techniques (Cont’d)

There are sevaral types of preconditioners that can be used:

(@) Preconditioners based on splitting of the matrix A, 1.e.
A=M-N
(b) Complete or incomplete factorization of A, e.g.
A=LLT+E
(c) Approximation of M=A-1
(d) Reordering of the equations and/or unknowns, e.g.
Domain Decomposition



9. Preconditioning Techniques (Cont’d)
(a) Preconditioning based on splittings of A
 Diagonal Preconditioning:

M =D=diag{ay;, 8y +-+ 8y}

SN

Z2

I

2

%

G — "/ — \xl
ﬁ '

<

» Tridiagonal Preconditioning

€

=
@

 Block Diagonal Preconditioning



9. Preconditioning Technigues (Cont’d)
(b) Preconditioning based on factorization of A

» Cholesky Factorization (for symmetric and positive definite matrix)
as adirect method:

A=LLT
x =(LT)(L"b)
where:

i—1

Lii :\/'Aﬁ'i - 2 Lik
k=1
i—1

Aji — 2 LijkLik
| .. — k=1
! Lii

« Modified Cholesky factorization: A = LDLT

, J=1+L4i+2,---,n



9. Preconditioning Technigues (Cont’d)
(b) Preconditioning based on factorization of A

 Incomplete Cholesky Factorization:
A=LLT+EorA=LDLT+E,wherel;=0if (i,j)eP
Simplest choiceis: P={(i,})| &;=0; 1J,=1,2,...,n} =>1CCG(0)

Neve | N

N NN

I~

~ 7-1 2 T ~2 e ~ :
g =d "= -b=1di 1 -G-ndi-m , B =0, G =¢,1=12--,n
+ Modified ICCG(0): M =(L +D)D YD +L")

biz 2
diag(A) =diag(M), d; =4 _d-_l_ i—m



9. Preconditioning Technigues (Cont’d)
(c) Preconditioning based on approximation of A

 If p(J)<1, thentheinverseof [-Jis

o0
(1-)t= 2I3=1+3+3%2+3%+...

« Write matrix A as: k=0

A=D+L+U=D(1+D-{(L +U)) => J=-D}L +V))
» Theinverse of A can be expressed as:
A=D1 -I)1t=01-))"D™"

00 _ k B
- z(—l)k(D 1(|_+U)) DL
k=0
. For k=1, onehasthat: M t=D1-D}L +U)D*
_ R L k(-1 K -1
« For k=m, oneusually usess M = X7k (-1 (D (L +U)) D
k=0



9. Preconditioning Technigues (Cont’d)

(d) Domain Decomposition Preconditioning

Domain |

Domain |l

M-l
1

0

Mj
0

0

0

0

By

Mo, By

Bl B! g
1 2

0

o M1 o
2

S—l

Al 0 Bl Xl_
T T
_Bl BZ Q_‘Z‘
M; 0 O
L', where L=| 0 Mo O
B B! s
| 1 2 _
.S =s+B'M1B;+B'M B,
1 1 2 2




10. Conjugate Gradient Type Algorithmsfor

Nonsymmetric M atrices

« The Bi-Conjugate Gradient
(BCG) Algorithm was propo-
sed by Lanczosin 1954,

* It solves not only the original
system Ax=Db but also the dual
linear system ATX =b".

 Each step of thisalgorithm
requires a matrix-by-vector
product with both A and AT.

» The search direction p;” does
not contribute to the soI ution
directly.

q<Ap
q* = ATp
5nevv

p q
X < X+ap
I <r-aq
r<r -aq
Oold < Onew

*
Onay <& T Tr

IB<Z5FI€W
Oold
p<:r+ﬂp

p <:r +,Bp
| <i1+1

*

o <—

*

T

|<=0, r<b-AX, r r*=0
p&=r,p =r
While i<img and Snay > £200

*
, 5new<:rTr



10. Conjugate Gradient Type Algorithmsfor
Nonsymmetric Matrices (Cont’d)

 The Conjugate Gradient i <0, rg<b-Axg, rg isarbitrary
Squared (CGS) Algorithm p<=To,U=To
was developed by Sonneveldin  Snew <y T\ 50 < Snew
1984. While i<i o and Spay > £25,
 Main idea of the algorithm: o < Onew
4 ro’ Ap
rj=¢j(A)ro 0= U aAp
pj =7Z'j(A)r0 X<=X+a(u+q)
* T, * r<r-aA(u+q)
rj — ¢j (A )ro 5O|d <:52$N
p*. :ﬂj(AT)I’* Onew =o' !
J 0 ﬂc5new
old
usr+ /g
p<=u+4(q+ pp)

|l <i+1



10. Conjugate Gradient Type Algorithmsfor
Nonsymmetric Matrices (Cont’d)

« The Bi-Conjugate Gradient i <0, rg<b—AXxg, ryisarbitrary
Stabilized (Bi-CGSTAB) p<=To
Algorithm was devel oped by Srew S To' T 80 < Snew
van der Vorst in 1992. While i <ir and Snay > £25,
» Rather than producing iterates o « Onew
whose residual vectors are of ro! Ap
the form ST —?Ap
2
i ¢J' (Ao v (ASs)ﬁis
* It produces iterates with X <= X+ap + S
residual vectors of the form [ < S-wAS
Oold &< O
r: =w:(A)d: (Ar old new
j l//J( )¢J( )ro Sy = rTE

Pj=wj(A)rj(A)rg

JoR= 5newxa
Oold @

p<=r+[(p—wAp)
| <1+1




Time to solve
model problem

Complexity of linear solvers

(Poisson’s nt/z n1/3

equation) on

regular mesh

2D 3D

Sparse Cholesky: O(ni->) O(n?)
arithmetc o) o)
CG, no precond: O(nts) O(nt33)
CG, modified IC: O(nt-2°) O(nt17)
CG, support trees: |O(n*29) -> O(nt*) | O(nt7>) -> O(nt31)
Multigrid: O(n) O(n)




