
CG Method � Conjugate Gradient (CG) Method

M. R. Hestenes & E. Stiefel, 1952

BiCG Method � Biconjugate Gradient (BiCG) Method

C. Lanczos, 1952
D. A. H. Jacobs, 1981
C. F. Smith et al., 1990
R. Barret et al., 1994

CGS Method � Conjugate Gradient Squared (CGS) Method (MATLAB Function)

P. Sonneveld, 1989

GMRES Method � Generalized Minimal � Residual (GMRES) Method

Y. Saad & M. H. Schultz, 1986
R. Barret et al., 1994

Y. Saad, 1996

QMR Method � Quasi�Minimal�Residual (QMR) Method

R. Freund & N. Nachtigal, 1990
N. Nachtigal, 1991
R. Barret et al., 1994
Y. Saad, 1996

Conjugate Gradient Method

1. Introduction, Notation and Basic Terms
2. Eigenvalues and Eigenvectors
3. The Method of Steepest Descent
4. Convergence Analysis of the Method of Steepest Descent
5. The Method of Conjugate Directions
6. The Method of Conjugate Gradients
7. Convergence Analysis of Conjugate Gradient Method
8. Complexity of the Conjugate Gradient Method
9. Preconditioning Techniques
10. Conjugate Gradient Type Algorithms for Non-

Symmetric Matrices (CGS, Bi-CGSTAB Method)

1. Introduction, Notation and Basic Terms

� The CG is one of the most popular iterative methods for solving
large systems of linear equations

Ax=b
which arise in many important settings, such as finite difference and
finite element methods for solving partial differential equa-tions,
circuit analysis etc.
� It is suited for use with sparse matrices. If A is dense, the best

choice is to factor A and solve the equation by backsubstitution.
� There is a fundamental underlying structure for almost all the

descent algorithms: (1) one starts with an initial point; (2) deter-
mines according to a fixed rule a direction of movement; (3) mo-ves
in that direction to a relative minimum of the objective function; (4)
at the new point, a new direction is determined and the process is
repeated. The difference between different algorithms depends upon
the rule by which successive directions of movement are selected.

1. Introduction, Notation and Basic Terms (Cont�d)

� A matrix is a rectangular array of numbers, called elements.

� The transpose of an mn matrix A is the nm matrix AT with
elements

aij
T = aji

� Two square nn matrices A and B are similar if there is a nonsin-
gular matrix S such that

B=S-1AS
� Matrices having a single row are called row vectors; matrices

having a single column are called column vectors.
Row vector: a = [a1, a2, �, an]
Column vector: a = (a1, a2, �, an)

� The inner product of two vectors is written as





n

i
ii

1

T yxyx

1. Introduction, Notation and Basic Terms (Cont�d)

� A matrix is called symmetric if aij = aji .
� A matrix is positive definite if, for every nonzero vector x

xTAx > 0
� Basic matrix identities: (AB)T=BTAT and (AB)-1=B-1A-1

� A quadratic form is a scalar, quadratic function of a vector with the
form

� The gradient of a quadratic form is

c
2
1

)f(TT
 xbAxx x

bAxxA

x

x

 x 






























2
1

2
1

)f(
x

)f(
x

)(f T

n

1
'

1. Introduction, Notation and Basic Terms (Cont�d)

� Various quadratic forms for an arbitrary 22 matrix:

Positive-definite
matrix

Negative-definite
matrix

Singular
positive-indefinite

matrix

Indefinite
matrix

� Specific example of a 22 symmetric positive definite matrix:

1. Introduction, Notation and Basic Terms (Cont�d)



























2
2

0c
8
2

62
23

x b A ,,

Graph of a quadratic form f(x)

Contours of the
quadratic form

Gradient of
the quadratic form

2. Eigenvalues and Eigenvectors

� For any nn matrix B, a scalar  and a nonzero vector v that satisfy
the equation

Bv=v
are said to be the eigenvalue and the eigenvector of B.
� If the matrix is symmetric, then the following properties hold:

(a) the eigenvalues of B are real
(b) eigenvectors associated with distinct eigenvalues are

orthogonal
� The matrix B is positive definite (or positive semidefinite) if and

only if all eigenvalues of B are positive (or nonnegative).
� Why should we care about the eigenvalues? Iterative methods often

depend on applying B to a vector over and over again:
(a) If ||<1, then Biv=iv vanishes as i approaches infinity
(b) If ||>1, then Biv=iv will grow to infinity.

2. Eigenvalues and Eigenvectors (Cont�d)

=-0.5

2

� Examples for ||<1 and || >1

� The spectral radius of a matrix is: (B)= max|i|

=0.7
=-2

2. Eigenvalues and Eigenvectors (Cont�d)

� Example: The Jacobi Method for the solution of Ax=b
- split the matrix A such that A=D+E

- Instead of solving the system Ax=b, one solves the modifi-
ed system x=Bx+z, where B=-D-1E and z=D-1b

- The iterative method is: x(i+1)= Bx(i)+z, or
it terms of the error vector: e(i+1)= Be(i)

- For our particular example, we have that the eigenvalues
and the eigenvectors of the matrix A are:

1=7, v1=[1, 2]T

2=2, v2=[-2, 1]T

- The eigenvalues and eigenvectors of the matrix B are:
1=-2/3=-0.47, v1=[2, 1]T

2= 2/3=0.47, v2=[-2, 1]T

� Graphical representation of the convergence of the Jacobi method

2. Eigenvalues and Eigenvectors (Cont�d)

Eigenvectors of B
together with their

eigenvalues

Convergence of the
Jacobi method which
starts at [-2,-2]T and
converges to [2, -2]T

The error vector e(0) The error vector e(1)

The error vector e(2)

3. The Method of Steepest Descent

� In the method of steepest descent, one starts with an arbitrary point
x(0) and takes a series of steps x(1), x(2), � until we are satis-fied that
we are close enough to the solution.

� When taking the step, one chooses the direction in which f
decreases most quickly, i.e.

� Definitions:

error vector: e(i)=x(i)-x
residual: r(i)=b-Ax(i)

� From Ax=b, it follows that

r(i)=-Ae(i)=-f�(x(i))

(i)(i))(f Axbx  '

The residual is actually the direction of steepest descent

3. The Method of Steepest Descent (Cont�d)

� Start with some vector x(0). The next vector falls along the solid line

� The magnitude of the step is determined with a line search proce-
dure that minimizes f along the line:

)0()0()1(rxx 

 

  

 
)0(

)0(
)0(

T
)0()0(

)0(
T

)0()0(

)0(
T

)1(

)0(
T

)1(

)1(T
)1()1(

)0(

)0(
)0(

0

0

0

0

0
d

d
)(f)f(

d
d

Arr

rr
 rArrr

rrxAb

rAxb

rr

x
xx

T

T
T















'

� Geometrical representation
(e)

(f)

3. The Method of Steepest Descent (Cont�d)

3. The Method of Steepest Descent (Cont�d)

� The algorithm

� To avoid one matrix-vector multiplication, one uses

(i)(i)(i))1(i(i)(i)(i))1(i

(i)

(i)
(i)

(i)(i)

(i)

(i)

ree rxx

Arr

rr

Axbr

T

T









(i)(i)(i))1(i Arrr 

Two matrix-vector
multiplications are
required.

The disadvantage of using this recurrence is that the residual sequence is
determined without any feedback from the value of x(i), so that round-off

errors may cause x(i) to converge to some point near x.

4. Convergence Analysis of the Method of Steepest Descent
� The error vector e(i) is equal to the

eigenvector vj of A

� The error vector e(i) is a linear combi-
nation of the eigenvectors of A, and all
eigenvalues are the same

0,
1

(i)(i)(i))1(i
j(i)

(i)

(i)

jjj(i)(i)

(i)

(i)







 ree
Arr

rr
vAvAer

T

T

0,
1

(i)(i)(i))1(i
(i)

(i)

(i)

n

1j
jj

n

1j
jjj(i)(i)

n

1j
jj(i)

(i)

(i)





  

 







ree
Arr

rr

vvAer

ve

T

T

3. The Method of Steepest Descent

� In the method of steepest descent, one starts with an arbitrary point
x(0) and takes a series of steps x(1), x(2), � until we are satis-fied that
we are close enough to the solution.

� When taking the step, one chooses the direction in which f
decreases most quickly, i.e.

� Definitions:

error vector: e(i)=x(i)-x
residual: r(i)=b-Ax(i)

� From Ax=b, it follows that

r(i)=-Ae(i)=-f�(x(i))

(i)(i))(f Axbx  '

The residual is actually the direction of steepest descent

3. The Method of Steepest Descent (Cont�d)

� Start with some vector x(0). The next vector falls along the solid line

� The magnitude of the step is determined with a line search proce-
dure that minimizes f along the line:

)0()0()1(rxx 

 

  

 
)0(

)0(
)0(

T
)0()0(

)0(
T

)0()0(

)0(
T

)1(

)0(
T

)1(

)1(T
)1()1(

)0(

)0(
)0(

0

0

0

0

0
d

d
)(f)f(

d
d

Arr

rr
 rArrr

rrxAb

rAxb

rr

x
xx

T

T
T















'

� Geometrical representation
(e)

(f)

3. The Method of Steepest Descent (Cont�d)

3. The Method of Steepest Descent (Cont�d)

� Summary of the algorithm

� To avoid one matrix-vector
multiplication, one uses instead

(i)(i)(i))1(i Arrr 

(i)(i)(i))1(i

(i)

(i)
(i)

(i)(i)

(i)

(i)

rxx

Arr

rr

Axbr

T

T









� Efficient implementation of the
method of steepest descent

1ii

endif
-

else
-

50le by is divisibi If

andiiWhile

0i

T

T

0
2

max

T
























rr

q r r

 Ax br

rxx

qr

Arq

rr

Axbr

4. Convergence Analysis of the Method of Steepest Descent
� The error vector e(i) is equal to the

eigenvector vj of A

� The error vector e(i) is a linear combi-
nation of the eigenvectors of A, and all
eigenvalues are the same

0,
1

(i)(i)(i))1(i
j(i)

(i)

(i)

jjj(i)(i)

(i)

(i)







 ree
Arr

rr
vAvAer

T

T

0,
1

(i)(i)(i))1(i
(i)

(i)

(i)

n

1j
jj

n

1j
jjj(i)(i)

n

1j
jj(i)

(i)

(i)





  

 







ree
Arr

rr

vvAer

ve

T

T

4. Convergence Analysis of the Method of Steepest Descent
(Cont�d)

� General convergence of the method can be proven by calculating
the energy norm

� For n=2, one has that

 
    

 
 

j j
2
jj

3
j

2
j

2
j

2
j

2
j222

A)i()1i(
T

)1(i
2

A)1i(1 ,eAeee

12minmax

232

222
2

/,/

1
1

))((

)(
1













Conditioning number

4. Convergence Analysis of the Method of Steepest Descent
(Cont�d)

The influence of the spectral
condition number on the convergence

Worst-case scenario: =±

5. The Method of Conjugate Directions

� Basic idea:
1. Pick a set of orthogonal
search directions d(0), d(1), � ,
d(n-1)

2. Take exactly one step in
each search direction to line up
with x

� Mathematical formulation:
1. For each step we choose a
point

x(i+1)=x(i)+ (i) d(i)

2. To find  (i), we use the fact
that e(i+1) is orthogonal to d(i)

 

)i(
T

)i(

)i(
T

)i(
)i(

)i(
T

)i()i()i(
T

)i(

)i()i()i(
T

)i(

)1i(
T

)i(

0

0

0

dd

ed

dded

ded

ed









5. The Method of Conjugate Directions (Cont�d)

� To solve the problem of not knowing e(i), one makes the search
directions to be A-orthogonal rather then orthogonal to each other,
i.e.:

0A)j(
T

)i(dd

5. The Method of Conjugate Directions (Cont�d)

� The new requirement is now that e(i+1) is A-orthogonal to d(i)

 

(i)

(i)
)i(

)i()i()i(
T

)i(

)1i(
T

)i(

(i)
T

)1(i

)1(iT
)1(i)1(i

(i)

(i)

0

0

0

0
d

d
)('f)f(

d
d

Add

rd

deAd

Aed

dr

x
xx

T

T






















If the search vectors were the residuals, this
formula would be identical to the method of

steepest descent.

5. The Method of Conjugate Directions (Cont�d)

� Proof that this process computes x in n-steps
- express the error terms as a linear combination of the search

directions

- use the fact that the search directions are A-orthogonal

)j(

1n

0j
)j()0(de 







5. The Method of Conjugate Directions (Cont�d)

� Calculation of the A-ortogonal search directions by a conjugate
Gram-Schmidth process
1. Take a set of linearly independent vectors u0, u1, � , un-1

2. Assume that d(0)=u0

3. For i>0, take an ui and subtracts all the components from it
that are not A-orthogonal to the previous search directions

)j(
T
(j)

)j(
T
(i)

ij)j(

1i

0j
ij)i()i(,

Add

Adu
 dud  





5. The Method of Conjugate Directions (Cont�d)

� The method of Conjugate Directions using the axial unit vectors as
basis vectors

5. The Method of Conjugate Directions (Cont�d)

1. The error vector is A-orthogonal to all previous search directions
2. The residual vector is orthogonal to all previous search directions
3. The residual vector is also orthogonal to all previous basis vectors.

jifor0j
T
ij

T
ij

T
i  rurdAed

� Important observations:

6. The Method of Conjugate Gradients

� The method of Conjugate Gradients is simply the method of
conjugate directions where the search directions are constructed by
conjugation of the residuals, i.e. ui=r(i)

� This allows us to simplify the calculation of the new search
direction because

� The new search direction is determined as a linear combination of
the previous search direction and the new residual
















1ji0

1ji
1

)1i(
T

)1i(

)i(
T

)i(

)1i(
T

)1i(

)i(
T

)i(

)1i(ij rr

rr

Add

rr

(i)i)1i()1(i drd  

6. The Method of Conjugate Gradients (Cont�d)

� Efficient implementation

1ii

endif
-

else
-

50y ivisible b If i is d

andiiWhile

0i

old

new

T
new

newold

T
new

0
2

newmax

new0

T
new

































dr d

rr

q r r

 Ax br

dxx
qd

Adq

rr
rd

Axbr

The Landscape of Ax=b
Solvers

Pivoting

LU

GMRES,

BiCGSTAB,
�

Cholesky

Conjugate
gradient

Direct
A = LU

Iterative
y� = Ay

Non-
symmetric

Symmetric
positive
definite

More Robust Less Storage (if sparse)

More Robust

More General

Conjugate gradient iteration

� One matrix-vector multiplication per iteration
� Two vector dot products per iteration
� Four n-vectors of working storage

x0 = 0, r0 = b, d0 = r0

for k = 1, 2, 3, . . .

ák = (rT
k-1rk-1) / (dT

k-1Adk-1) step length

xk = xk-1 + ák dk-1 approx solution

rk = rk-1 � ák Adk-1 residual

âk = (rT
k rk) / (rT

k-1rk-1) improvement

dk = rk + âk dk-1 search direction

7. Convergence Analysis of the CG Method

� If the algorithm is performed in exact arithmetic, the exact solution
is obtained in at most n-steps.

� When finite precision arithmetic is used, rounding errors lead to
gradual loss of orthogonality among the residuals, and the finite
termination property of the method is lost.

� If the matrix A has only m distinct eigenvalues, then the CG will
converge in at most m iterations

� An error bound on the CG method can be obtained in terms of the
A-norm, and after k-iterations:

k

A0Ak 1)(
1)(

2 













A
A

xxxx

� Dominant operations of Steepest Descent or Conjugate Gradient
method are the matrix vector products. Thus, both methods have
spatial complexity O(m).

� Suppose that after I-iterations, one requires that ||e(i)||A||e(0)||A
(a) Steepest Descent:

(b) Conjugate Gradient:

� The time complexity of these two methods is:

(a) Steepest Descent:

(b) Conjugate Gradient:

� Stopping criterion: ||r(i)||||r(0)||

8. Complexity of the CG Method

  


 1
2
1 lni

  


 2
2
1 lni

)(mO

)(mO

9. Preconditioning Techniques

References:

� J.A. Meijerink and H.A. van der Vorst, �An iterative solution method for
linear systems of which the coefficient matrix is a symmetric M-matrix,�
Mathematics of Computation, Vol. 31, No. 137, pp. 148-162 (1977).

� J.A. Meijerink and H.A. van der Vorst, �Guidelines for the usage of
incomplete decompositions in solving sets of linear equations as they
occur in practical problems,� Journal of Computational Physics, Vol. 44,
pp. 134-155 (1981).

� D.S. Kershaw, �The incomplete Cholesky-Conjugate gradient method for
the iterative solution of systems of linear equations,� Journal of
Computational Physics, Vol. 26, pp. 43-65 (1978).

� H.A. van der Vorst, �High performance preconditioning,� SIAM Journal
of Scientific Statistical Computations, Vol. 10, No. 6, pp. 1174-1185
(1989).

9. Preconditioning Techniques (Cont�d)

� Preconditioning is a technique for improving the condition number
of a matrix. Suppose that M is a symmetric, positive-definite matrix
that approximates A, but is easier to invert. Then, rather than
solving the original system

Ax=b
one solves the modified system

M-1Ax= M-1b
� The effectiveness of the preconditioner depends upon the condition

number of M-1A.

� Intuitively, the preconditioning is an attempt to stretch the quadratic
form to appear more spherical, so that the eigenvalues become
closer to each other.

� Derivation:
xEx bExAEE EEM TTT


 ~,~, 11

9. Preconditioning Techniques (Cont�d)
� Transformed Preconditioned CG

(PCG) Algorithm

1

~~~

~~

~~~~~

~~~
~~

~~

,~~

~~,~~,0

11

1
0

2
max

0

11































ii

-or-

andiiWhile

i

old

new

T
new

newold

T

T
new

T
new

new
T

new

T

    
d rd    

    

rr    

    
  q  rr    xAEE  bEr    

dxx    
qd

    

dAEEq    

         

  rr

rd   xAEEbEr   























� Untransformed PCG Algorithm
 dEd  rEr T


 ~,~ 1

1

,

,,0

1

1

0
2

max

0
1

1





























ii

-or-

andiiWhile

i

old

new

-T
new

newold

T
new

new

new
-T

new

    
dr Md    

    

rMr    

    
 q r r   Ax   br    

dxx    
qd

    

Adq    
         

  rMr

rMd   Axbr   

























9.  Preconditioning Techniques (Cont�d)

There are sevaral types of preconditioners that can be used:

(a) Preconditioners based on splitting of the matrix A, i.e.

A = M - N
(b)   Complete or incomplete factorization of A, e.g.

A = LLT + E

(c)   Approximation of M=A-1

(d)   Reordering of the equations and/or unknowns, e.g.

Domain Decomposition



9.  Preconditioning Techniques (Cont�d)
(a) Preconditioning based on splittings of A

� Diagonal Preconditioning:
M=D=diag{a11, a22, � ann}

� Tridiagonal Preconditioning

� Block Diagonal Preconditioning



























2
2

0c
8
2

62
23

x         b   A ,,



9.  Preconditioning Techniques (Cont�d)
(b) Preconditioning based on factorization of A

� Cholesky Factorization (for symmetric and positive definite matrix) 
as a direct method:

A = LLT

x = (L-T)(L-1b)

where:

� Modified Cholesky factorization: A = LDLT

niij
L

LLA

L

LAL

ii

i

k
ikjkji

ji

i

k
ikiiii

,,2,1   ,

1

1

1

1



















9.  Preconditioning Techniques (Cont�d)
(b) Preconditioning based on factorization of A

� Incomplete Cholesky Factorization:

A = LLT + E or A = LDLT + E , where Lij=0 if (i,j)P

Simplest choice is: P={(i,j)| aij=0; i,j,=1,2,�,n}  => ICCG(0)

� Modified ICCG(0): 



















A
aibi ci




















TL

ãi ib
~

ic~



















D
id

~

niccbbdcdbada iiiimimiiiiii ,,2,1,~,
~

,
~~~~~~ 2

1
2

1
1  


mi

mi

i

i
ii

T

d

c

d

b
addiagdiag















2

1

2
1

1

),()(

)()(

 MA

LDDDLM

9. Preconditioning Techniques (Cont�d)
(c) Preconditioning based on approximation of A

� If (J)<1, then the inverse of I-J is

� Write matrix A as:

A=D+L+U=D(I+D-1(L+U)) => J= -D-1(L+U))

� The inverse of A can be expressed as:

� For k=1, one has that:

� For k=m, one usually uses:

 






0

321)(
k

k JJJIJJI

  11

0

1111

)()1(

)())((








 



DULD

DJIJIDA

k

k

k

1111)(  DULDDM

  11

0

1)()1(




  DULDM

km

k

k
km 

9. Preconditioning Techniques (Cont�d)
(d) Domain Decomposition Preconditioning

Domain I

Domain II







































 SBB

0M0

00M

L L

S00

0M0

00M

LM
TT

T-

-

where

21

2

1

2

1

1

1

1

,





















































f

d

d

z

x

x

QBB

BA0

B0A

 bAx 2

1

2

1

22

11

21

,
TT

2
1

1
1*

*
22

11

2211

21

, BMBBMBSS

SBB

BM0

B0M

M -T-T

TT




















10. Conjugate Gradient Type Algorithms for
Nonsymmetric Matrices

� The Bi-Conjugate Gradient
(BCG) Algorithm was propo-
sed by Lanczos in 1954.

� It solves not only the original
system Ax=b but also the dual
linear system ATx*=b*.

� Each step of this algorithm
requires a matrix-by-vector
product with both A and AT.

� The search direction pj
* does

not contribute to the solution
directly.

1

,,
,0

*

*

*

0
2

max

0



























ii

-
-

andiiWhile

, i

old

new

T
new

newold

*T
new

T*

new

new
T

new

p rp

pr p

rr

q rr
q r r
pxx

qp

pAq
Apq

 rr rp r,p

0r*rAxbr

**

T
























10. Conjugate Gradient Type Algorithms for
Nonsymmetric Matrices (Cont�d)

� The Conjugate Gradient
Squared (CGS) Algorithm
was developed by Sonneveld in
1984.

� Main idea of the algorithm:

1
(

)(
)(

,

arbitrary is,0

*
0

*
0

0
2

max

0
*

00

*
000

0


























ii
)

-

andiiWhile

, i

old

new

T
new

newold

T
new

new

new
T

new

pq up

qr u

rr

quA r r

quxx
Apuq

Apr

 rr

ru ,rp
 rAxbr























**

**

rAp

rAr

rAp
rAr

0

0

)(

)(

)(
)(

0

0

T
j

T
j

jj

jj

j

j

















10. Conjugate Gradient Type Algorithms for
Nonsymmetric Matrices (Cont�d)

� The Bi-Conjugate Gradient
Stabilized (Bi-CGSTAB)
Algorithm was developed by
van der Vorst in 1992.

� Rather than producing iterates
whose residual vectors are of
the form

� it produces iterates with
residual vectors of the form

 

1
(

,

arbitrary is,0

*
0

*
0

0
2

max

0
*

0

*
000

0



























ii
)

-

andiiWhile

, i

old

new

T
new

newold

T

T

T
new

new

new
T

new

Appr p

rr

As sr

spxx
AsAs

Ass

Aprs
Apr

 rr

rp
 rAxbr





























0
2)(rAr
jj 

0

0
)()(

)()(
rAAp

rAAr

jjj

jjj








Complexity of linear solvers

O(n1.17)O(n1.25)CG, modified IC:

O(n1.75) -> O(n1.31)O(n1.20) -> O(n1+)CG, support trees:

O(n1.33)O(n1.5)CG, no precond:

O(n2)O(n2)
CG, exact
arithmetic:

O(n)O(n)Multigrid:

O(n2)O(n1.5)Sparse Cholesky:

3D2D

n1/2 n1/3

Time to solve
model problem
(Poisson�s
equation) on
regular mesh

