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1.  Introduction, Notation and Basic Terms

� The CG is one of the most popular iterative methods for solving 
large systems of linear equations

Ax=b
which arise in many important settings, such as finite difference and 
finite element methods for solving partial differential equa-tions, 
circuit analysis etc.
� It is suited for use with sparse matrices. If A is dense, the best 

choice is to factor A and solve the equation by backsubstitution.
� There is a fundamental underlying structure for almost all the 

descent algorithms: (1) one starts with an initial point; (2) deter-
mines according to a fixed rule a direction of movement; (3) mo-ves 
in that direction to a relative minimum of the objective function; (4) 
at the new point, a new direction is determined and the process is 
repeated. The difference between different algorithms depends upon 
the rule by which successive directions of movement are selected.



1.  Introduction, Notation and Basic Terms (Cont�d)

� A matrix is a rectangular array of numbers, called elements.

� The transpose of an mn matrix A is the nm matrix AT with 
elements

aij
T = aji

� Two square nn matrices A and B are similar if there is a nonsin-
gular matrix S such that

B=S-1AS
� Matrices having a single row are called row vectors; matrices 

having a single column are called column vectors.
Row vector: a = [a1, a2, �, an]
Column vector: a = (a1, a2, �, an)

� The inner product of two vectors is written as 
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1.  Introduction, Notation and Basic Terms (Cont�d)

� A matrix is called symmetric if aij = aji .
� A matrix is positive definite if, for every nonzero vector x

xTAx > 0
� Basic matrix identities: (AB)T=BTAT and (AB)-1=B-1A-1

� A quadratic form is a scalar, quadratic function of a vector with the 
form

� The gradient of a quadratic form is
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1.  Introduction, Notation and Basic Terms (Cont�d)

� Various quadratic forms for an arbitrary 22 matrix:

Positive-definite
matrix

Negative-definite
matrix

Singular
positive-indefinite

matrix

Indefinite
matrix



� Specific example of a 22 symmetric positive definite matrix:

1.  Introduction, Notation and Basic Terms (Cont�d)
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2.  Eigenvalues and Eigenvectors

� For any nn matrix B, a scalar  and a nonzero vector v that satisfy 
the equation

Bv=v
are said to be the eigenvalue and the eigenvector of B.
� If the matrix is symmetric, then the following properties hold:

(a)  the eigenvalues of B are real
(b)  eigenvectors associated with distinct eigenvalues are

orthogonal
� The matrix B is positive definite (or positive semidefinite) if and 

only if all eigenvalues of B are positive (or nonnegative).
� Why should we care about the eigenvalues? Iterative methods often 

depend on applying B to a vector over and over again:
(a) If ||<1, then Biv=iv vanishes as i approaches infinity
(b) If ||>1, then Biv=iv will grow to infinity.



2.  Eigenvalues and Eigenvectors (Cont�d)

=-0.5

2

� Examples for ||<1 and || >1

� The spectral radius of a matrix is:  (B)= max|i|

=0.7
=-2



2.  Eigenvalues and Eigenvectors (Cont�d)

� Example: The Jacobi Method for the solution of Ax=b
- split the matrix A such that A=D+E

- Instead of solving the system Ax=b, one solves the modifi-
ed system x=Bx+z, where B=-D-1E and z=D-1b

- The iterative method is: x(i+1)= Bx(i)+z, or
it terms of the error vector: e(i+1)= Be(i)

- For our particular example, we have that the eigenvalues 
and the eigenvectors of the matrix A are:

1=7, v1=[1, 2]T

2=2, v2=[-2, 1]T

- The eigenvalues and eigenvectors of the matrix B are:
1=-2/3=-0.47, v1=[2, 1]T

2= 2/3=0.47, v2=[-2, 1]T



� Graphical representation of the convergence of the Jacobi method

2.  Eigenvalues and Eigenvectors (Cont�d)

Eigenvectors of B
together with their

eigenvalues

Convergence of the 
Jacobi method which 
starts at [-2,-2]T and
converges to [2, -2]T

The error vector e(0) The error vector e(1)

The error vector e(2)



3.  The Method of Steepest Descent

� In the method of steepest descent, one starts with an arbitrary point 
x(0) and takes a series of steps x(1), x(2), � until we are satis-fied that 
we are close enough to the solution.

� When taking the step, one chooses the direction in which f 
decreases most quickly, i.e.

� Definitions:

error vector: e(i)=x(i)-x
residual: r(i)=b-Ax(i)

� From Ax=b, it follows that

r(i)=-Ae(i)=-f�(x(i))

(i)(i))(f Axbx  '

The residual is actually the direction of steepest descent



3.  The Method of Steepest Descent (Cont�d)

� Start with some vector x(0). The next vector falls along the solid line

� The magnitude of the step is determined with a line search proce-
dure that minimizes f along the line:
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� Geometrical representation
(e)

(f)

3.  The Method of Steepest Descent (Cont�d)



3.  The Method of Steepest Descent (Cont�d)

� The algorithm

� To avoid one matrix-vector multiplication, one uses
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Two matrix-vector
multiplications are
required.

The disadvantage of using this recurrence is that the residual sequence is
determined without any feedback from the value of x(i), so that round-off

errors may cause x(i) to converge to some point near x.



4.  Convergence Analysis of the Method of Steepest Descent
� The error vector  e(i) is equal to the

eigenvector vj of A

� The error vector e(i) is a linear combi-
nation of the eigenvectors of A, and all 
eigenvalues are the same
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3.  The Method of Steepest Descent

� In the method of steepest descent, one starts with an arbitrary point 
x(0) and takes a series of steps x(1), x(2), � until we are satis-fied that 
we are close enough to the solution.

� When taking the step, one chooses the direction in which f 
decreases most quickly, i.e.

� Definitions:

error vector: e(i)=x(i)-x
residual: r(i)=b-Ax(i)

� From Ax=b, it follows that
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The residual is actually the direction of steepest descent



3.  The Method of Steepest Descent (Cont�d)

� Start with some vector x(0). The next vector falls along the solid line

� The magnitude of the step is determined with a line search proce-
dure that minimizes f along the line:
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� Geometrical representation
(e)

(f)

3.  The Method of Steepest Descent (Cont�d)



3.  The Method of Steepest Descent (Cont�d)

� Summary of the algorithm

� To avoid one matrix-vector 
multiplication, one uses instead
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� Efficient implementation of the 
method of steepest descent
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4.  Convergence Analysis of the Method of Steepest Descent
� The error vector  e(i) is equal to the

eigenvector vj of A

� The error vector e(i) is a linear combi-
nation of the eigenvectors of A, and all 
eigenvalues are the same
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4.  Convergence Analysis of the Method of Steepest Descent 
(Cont�d)

� General convergence of the method can be proven by calculating 
the energy norm

� For n=2, one has that
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4.  Convergence Analysis of the Method of Steepest Descent 
(Cont�d)

The influence of the spectral
condition number on the convergence

Worst-case scenario: =±



5.  The Method of Conjugate Directions

� Basic idea:
1. Pick a set of orthogonal   
search directions d(0), d(1), � , 
d(n-1)

2. Take exactly one step in 
each search direction to line up 
with x

� Mathematical formulation:
1. For each step we choose a 
point 

x(i+1)=x(i)+ (i) d(i)

2. To find  (i), we use the fact 
that e(i+1) is orthogonal to d(i)
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5.  The Method of Conjugate Directions (Cont�d)

� To solve the problem of not knowing e(i), one makes the search 
directions to be A-orthogonal rather then orthogonal to each other, 
i.e.:
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5.  The Method of Conjugate Directions (Cont�d)

� The new requirement is now that e(i+1) is A-orthogonal to d(i)
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If the search vectors were the residuals, this
formula would be identical to the method of

steepest descent.



5.  The Method of Conjugate Directions (Cont�d)

� Proof that this process computes x in n-steps
- express the error terms as a linear combination of the search

directions

- use the fact that the search directions are A-orthogonal
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5.  The Method of Conjugate Directions (Cont�d)

� Calculation of the A-ortogonal search directions by a conjugate 
Gram-Schmidth process
1. Take a set of linearly independent vectors u0, u1, � , un-1

2. Assume that d(0)=u0

3. For i>0, take an ui and subtracts all the components from it
that are not A-orthogonal to the previous search directions
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5.  The Method of Conjugate Directions (Cont�d)

� The method of Conjugate Directions using the axial unit vectors as 
basis vectors



5.  The Method of Conjugate Directions (Cont�d)

1. The error vector is A-orthogonal to all previous search directions
2. The residual vector is orthogonal to all previous search directions
3. The residual vector is also orthogonal to all previous basis vectors.
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� Important observations:



6.  The Method of Conjugate Gradients

� The method of Conjugate Gradients is simply the method of 
conjugate directions where the search directions are constructed by 
conjugation of the residuals, i.e. ui=r(i)

� This allows us to simplify the calculation of the new search 
direction because

� The new search direction is determined as a linear combination of 
the previous search direction and the new residual
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6.  The Method of Conjugate Gradients (Cont�d)

� Efficient implementation
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The Landscape of Ax=b 
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Conjugate gradient iteration

� One matrix-vector multiplication per iteration
� Two vector dot products per iteration
� Four n-vectors of working storage

x0 =  0,    r0 =  b,    d0 =  r0

for k  =  1, 2, 3, . . .

ák =  (rT
k-1rk-1) / (dT

k-1Adk-1)    step length

xk =  xk-1 + ák dk-1                             approx solution

rk =  rk-1 � ák Adk-1                           residual

âk =  (rT
k rk) / (rT

k-1rk-1)            improvement

dk =  rk + âk dk-1                                 search direction



7.  Convergence Analysis of the CG Method

� If the algorithm is performed in exact arithmetic, the exact solution 
is obtained in at most n-steps.

� When finite precision arithmetic is used, rounding errors lead to 
gradual loss of orthogonality among the residuals, and the finite 
termination property of the method is lost.

� If the matrix A has only m distinct eigenvalues, then the CG will 
converge in at most m iterations

� An error bound on the CG method can be obtained in terms of the 
A-norm, and after k-iterations:
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� Dominant operations of Steepest Descent or Conjugate Gradient 
method are the matrix vector products. Thus, both methods have 
spatial complexity O(m).

� Suppose that after I-iterations, one requires that ||e(i)||A||e(0)||A
(a) Steepest Descent:

(b) Conjugate Gradient:

� The time complexity of these two methods is:

(a) Steepest Descent:

(b) Conjugate Gradient:

� Stopping criterion: ||r(i)||||r(0)||

8.  Complexity of the CG Method
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9.  Preconditioning Techniques
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9.  Preconditioning Techniques (Cont�d)

� Preconditioning is a technique for improving the condition number 
of a matrix. Suppose that M is a symmetric, positive-definite matrix 
that approximates A, but is easier to invert. Then, rather than 
solving the original system

Ax=b
one solves the modified system

M-1Ax= M-1b
� The effectiveness of the preconditioner depends upon the condition 

number of M-1A.

� Intuitively, the preconditioning is an attempt to stretch the quadratic 
form to appear more spherical, so that the eigenvalues become 
closer to each other.

� Derivation: 
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9.  Preconditioning Techniques (Cont�d)
� Transformed Preconditioned CG 

(PCG) Algorithm 
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9.  Preconditioning Techniques (Cont�d)

There are sevaral types of preconditioners that can be used:

(a) Preconditioners based on splitting of the matrix A, i.e.

A = M - N
(b)   Complete or incomplete factorization of A, e.g.

A = LLT + E

(c)   Approximation of M=A-1

(d)   Reordering of the equations and/or unknowns, e.g.

Domain Decomposition



9.  Preconditioning Techniques (Cont�d)
(a) Preconditioning based on splittings of A

� Diagonal Preconditioning:
M=D=diag{a11, a22, � ann}

� Tridiagonal Preconditioning

� Block Diagonal Preconditioning
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9.  Preconditioning Techniques (Cont�d)
(b) Preconditioning based on factorization of A

� Cholesky Factorization (for symmetric and positive definite matrix) 
as a direct method:

A = LLT

x = (L-T)(L-1b)

where:

� Modified Cholesky factorization: A = LDLT

niij
L

LLA

L

LAL

ii

i

k
ikjkji

ji

i

k
ikiiii

,,2,1   ,

1

1

1

1



















9.  Preconditioning Techniques (Cont�d)
(b) Preconditioning based on factorization of A

� Incomplete Cholesky Factorization:

A = LLT + E or A = LDLT + E , where Lij=0 if (i,j)P

Simplest choice is: P={(i,j)| aij=0; i,j,=1,2,�,n}  => ICCG(0)

� Modified ICCG(0): 
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9.  Preconditioning Techniques (Cont�d)
(c) Preconditioning based on approximation of A

� If (J)<1, then the inverse of I-J is

� Write matrix A as:

A=D+L+U=D(I+D-1(L+U)) => J= -D-1(L+U))

� The inverse of A can be expressed as:

� For k=1, one has that:

� For k=m, one usually uses: 
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9.  Preconditioning Techniques (Cont�d)
(d) Domain Decomposition Preconditioning

Domain I

Domain II
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10.  Conjugate Gradient Type Algorithms for
Nonsymmetric Matrices

� The Bi-Conjugate Gradient
(BCG) Algorithm was propo-
sed by Lanczos in 1954.

� It solves not only the original 
system Ax=b but also the dual 
linear system ATx*=b*.

� Each step of this algorithm 
requires a matrix-by-vector 
product with both A and AT.

� The search direction pj
* does 

not contribute to the solution 
directly.
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10.  Conjugate Gradient Type Algorithms for
Nonsymmetric Matrices (Cont�d)

� The Conjugate Gradient 
Squared (CGS) Algorithm 
was developed by Sonneveld in 
1984.

� Main idea of the algorithm:
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10.  Conjugate Gradient Type Algorithms for
Nonsymmetric Matrices (Cont�d)

� The Bi-Conjugate Gradient 
Stabilized (Bi-CGSTAB) 
Algorithm was developed by 
van der Vorst in 1992.

� Rather than producing iterates 
whose residual vectors are of 
the form

� it produces iterates with 
residual vectors of the form
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Complexity of linear solvers

O(n1.17 )O(n1.25 )CG, modified IC:

O(n1.75 ) -> O(n1.31 )O(n1.20 ) -> O(n1+ )CG, support trees:

O(n1.33 )O(n1.5 )CG, no precond:

O(n2 )O(n2 )
CG, exact 
arithmetic:

O(n)O(n)Multigrid:

O(n2 )O(n1.5 )Sparse Cholesky:

3D2D

n1/2 n1/3

Time to solve 
model problem 
(Poisson�s 
equation) on 
regular mesh


