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I O curso MS933/MT404
Métodos Computacionais em Álgebra Linear

I Fornecer uma visão teórica e desenvolver habilidades
práticas computacionais de métodos numéricos aplicados
para resolver problemas de álgebra linear numérica em
grande escala. Particular ênfase recai sobre sistemas de
equações lineares de grande porte e de problemas
relacionados.

I Com efeito, observa-se que o desenvolvimento de tais
métodos computacionais em álgebra linear tem sua base
em resultados matemáticos rigorosos e, portanto, não são
dependentes de uma linguagem de programação
particular.
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David M. Young (1971)

“The availability of very high-speed computers with large, fast
memories has made it possible to obtain accurate numerical
solutions of mathematical problems which, although algorithms
for handling them were well known previously, could not be
used in practice because the number of calculations required
would have been prohibitive. A problem for which this is
particularly true is that of solving a large system of linear
algebraic equations where the matrix of the system is very
sparse.... These problems, in turn, arise in studies in such
areas as neutron diffusion, fluid flow, elasticity, steady-state
heat flow, and weather prediction...”
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ORGANIZAÇÃO DA EMENTA EM TÓPICOS

Pretende-se discutir os itens 1) e 2) a seguir ao longo de todo o
curso, incluindo aplicações pertinentes de modelos Ax = b
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ORGANIZAÇÃO DA EMENTA EM TÓPICOS

1) Algoritmos básicos para operações com vetores e matrizes.
Matrizes com estruturas especiais: operações e
armazenamento. Normas.

2) Análise de sensibilidade de sistemas lineares: Número de
condição. Condicionamento de um sistema linear.

3) Métodos diretos para resolução de sistemas lineares:
Fatorações: LU e Cholesky.

4) Métodos iterativos (indiretos) para resolução de sistemas
lineares: 4.1) Métodos de ponto fixo ou métodos
estacionários (e.g., Richardson, Gauss-Jacobi,
Gauss-Seidel e ) e 4.2) Métodos dos gradientes conjugados
(Métodos em Subespaços de Krylov).

5) O problema de quadrados mínimos. Fatorações QR e SVD.
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Motivation
I Nonlinear dynamics models (e.g. PDEs) provide a

quantitative description for many central models in
physical, biological, engineering sciences, and more...

I Although a rich development of mathematical theories to
solve PDEs and Nonlinear models have been achieved,
analytical techniques provide only a limited account for the
array of complex phenomena governed by such models
– The Abel Symposium (2010 Edition), Olso (Norway).
– International Congress of Mathematicians (ICM 2014),
Seoul (Korea).
– The International Congress on Industrial and Applied
Mathematics (ICIAM 2015), Pequim (China)

I Thus, numerical analysis and computational methods
for solving nonlinear models have emerged as the most
versatile tool to complement mathematical theory and
real-world experiments
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FIG 1. TIPOS DE ERROS E INCERTEZAS

We are primary interested in numerically solving

Ax = b

where matrix A is n × n and nonsingular, along with vector x is
n × 1 and vector b is n × 1 (with b 6= 0). (We will also discuss
the case when A is singular)
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MOTIVATION:

GOOGLE AND OCEAN CIRCULATION

GOOGLE: Kurt Bryan and Tanya Leise, The US
25,000,000,000 Eigenvector: The Linear Algebra behind
Google, SIAM Rev., 48(3) (2006) 569-581

OCEAN CIRCULATION: M. B. van Gijzen, C. B. Vreugdenhil,
and H. Oksuzoglu, The Finite Element Discretization for
Stream-Function Problems on Multiply Connected Domains, J.
Comp. Phys., 140 (1998) 30-46.
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More good references ...
Tobin A. Driscoll, Kim-Chuan Toh, and Lloyd N. Trefethen. From
Potential Theory to Matrix Iterations in Six Steps. SIAM Rev., 40(3)
(2006) 547-578.

M. Benzi, G. H. Golub, J. Liesen. Numerical solution of saddle point
problems Acta numerica, 14 (2005) 1-137.

Yousef Saad, Henk A. van der Vorstb. Iterative solution of linear
systems in the 20th century Journal of Computational and Applied
Mathematics, 123(12) (2000) 1-33.

Y. Saad. Practical use of polynomial preconditionings for the
conjugate gradient method SIAM Journal on Scientific and Statistical
Computing, 6(4) (1985) 865-881.

Mark Embree, Josef A. Sifuentes, Kirk M. Soodhalter, Daniel B.
Szyld, and Fei Xue. Short-Term Recurrence Krylov Subspace
Methods for Nearly Hermitian Matrices. SIAM Journal on Matrix
Analysis and Applications, 33(2) (2012) 480-500.

Klaus Schiefermayr. A Lower Bound for the Norm of the Minimal
Residual Polynomial Constructive Approximation, 33(3) (2011)
425-432. 10 / 1



FIG 1. TIPOS DE ERROS E INCERTEZAS

We are primary interested in numerically solving

Ax = b

where matrix A is n × n and nonsingular, along with vector x is
n × 1 and vector b is n × 1 (with b 6= 0). (We will also discuss
the case when A is singular)
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INTRODUCTORY PART:

CLASSIFICATION OF NUMERICAL METHODS FOR
SOLVING Ax = b
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Introductory part: Classification of numerical methods for
solving Ax = b

I The numerical solution methods for linear systems of the
form Ax = b are broadly classified into direct methods
and the iterative methods.

I For large systems, direct methods become impractical due
to the phenomenon of fill-in or fill, caused by the
generation of new entries during the factorisation phase.

I Iterative methods generate a sequence of approximations
that only converges in the limit to the solution. Beginning
with a given approximate solution, these methods
modify the components of the approximation in each
iteration, until a required convergence is achieved.
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I Thus, roughly speaking numerical methods for solving
linear systems of equations can generally be divided into
two classes:

I Direct methods. In the absence of roundoff error such
methods would yield the exact solution within a finite
number of steps.

I Iterative methods. These are methods that are useful for
problems involving special, very large matrices.
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OVERVIEW OF DIRECT METHODS
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I Direct Solution Methods

– Gaussian Elimination and LU Decomposition

– Special Matrices

– Ordering Strategies
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Gaussian Elimination and LU Decomposition
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How to use it
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Backward Substitution
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Triangular Systems
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Computational Cost - Naive but Useful
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LU Decomposition / Factorization
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Pivoting - It is noteworthy that Aε, 0 < ε << 1
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Pivoting - It is noteworthy that Aε, 0 < ε << 1 (Cont.)

Neal and Poole (1992) presented the so-called Rook pivoting
strategy. In short, this pivoting strategy appears to be
intermediate between partial pivoting and complete pivoting in
terms of efficiency and stability. For more details see Project 1 ! 24 / 1



Special Matrices
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Special Matrices (Cont.)
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A useful numerical tip
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LU vs. Gaussian Elimination (why store L?)
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Permutations and Reordering Strategies
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Permutations and Reordering Strategies
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Permutation Matrices
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Sparse matrices, graphs, and tree elimination
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Sparse matrices, graphs, and tree elimination
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Sparse matrices, graphs, and tree elimination (Cont.)
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Sparse matrices, graphs, and tree elimination (Cont.)

Let us see one more example for a structurally symmetric
sparse matrix S. In what follows, we have S = A or S = Â.
More good references ... David S. Watkins, Fundamentals of Matrix
Computations, New Jersey: John Wiley & Sons (2 ed., 2002) e (3 ed.,
2010).
Timothy A. Davis, Direct methods for sparse linear systems
(Fundamentals of algorithms Series), PA, SIAM (2006).
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Sparse matrices, graphs, and tree elimination (Cont.)

Figure. Top: arrowhead matrix A ∈ R7×7 and its Cholesky
factor L = chol(A). Bottom: effect of reversing the numbering.
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Edges and Vertices: Optimality criteria
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Edges and Vertices: Optimality criteria (Cont.)
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Edges and Vertices: Optimality criteria (Cont.)

Fig. Spy plots of Cholesky factors of reorderings of a discrete
Laplacian matrix. For each ordering, the number of nonzeros is
given in parentheses: original (2729) < random (3229).
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Edges and Vertices: Optimality criteria (Cont.)

Fig. Spy plots of Cholesky factors of reorderings of a discrete
Laplacian matrix. For each ordering, the number of nonzeros is
given in parentheses. original (2729) > reverse Cuthill-Mckee
(2006).
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Edges and Vertices: Optimality criteria (Cont.)

Fig. Spy plots of Cholesky factors of reorderings of a discrete
Laplacian matrix. For each ordering, the number of nonzeros is
given in parentheses. original (2729) > approximate minimum
degree (1344).
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Edges and Vertices: Optimality criteria (Cont.)
I One small example proves nothing, but extensive tests on

larger matrices have confirmed that the approximate
minimum-degree algorithm does significantly better than
reverse Cuthill-McKee on a wide variety of problems.

I However, effective exploitation of the good fill properties of
the approximate minimum-degree algorithm requires use
of a more flexible data structure for sparse matrices since
the fill is not restricted to a narrow band.

I In contrast, if we use the reverse Cuthill-McKee algorithm,
we can use a simple band or envelope scheme that
accommodates the fill automatically.

I For more details, see Project 1
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I Conditioning and Accuracy

– Upper bound on the error

– The Condition Number
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Conditioning and Accuracy: Upper bound on the error
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Conditioning and Accuracy: Upper bound on the error
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Conditioning and Accuracy: Condition number
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Conditioning and Accuracy: Properties and facts!

Motivation: The previous facts point out to the need an
alternative for solving Ax = b. Iterative methods!
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OVERVIEW OF ITERATIVE METHODS
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I Iterative Methods

– Motivation

– Basic Stationary Methods

– Nonstationary Methods

– Preconditioning
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Motivation
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Drawbacks of Direct Solution Methods

51 / 1



Drawbacks of Direct Solution Methods (Cont.)
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Drawbacks of Direct Solution Methods (Cont.)
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MOTIVATION:

FLUID DYNAMICS IN POROUS MEDIA

PDEs, HYPERBOLIC CONSERVATION LAWS AND
BALANCE LAWS

54 / 1



A possible motivation for iterative methods

55 / 1



A Canonical Example: Discrete 2D Laplacian

5-point discretization of the 2D Laplacian (Poisson equation)
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A Small Example: Sparsity Pattern

5-point discretization of the 2D Laplacian (Poisson equation)
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Basic Stationary Methods
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Stationary Methods (fixed point iteration)

59 / 1



Stationary Methods (The Basic Procedure)
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Stationary Methods: The hard task of finding a good M
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Stationary Methods: Jacobi, Gauss-Seidel, SOR and
others
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Preliminary Summary: Benefits & Drawbacks

Exercise: convince yourself about the computational
complexity displayed at the columns: benefits and drawbacks !
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Preliminary Summary: Benefits & Drawbacks (Cont.)
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Nonstationary Methods

Remark: Stationary versus Nonstationary Methods: What is
the best (if any) ?
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Nonstationary Methods (Krylov subspaces)

Remark1: Unlike stationary methods, nonstationary methods do not
have an iteration matrix !
Remark2: Looking more closely at this error (residual) rk , we see that
pk (A) is a k th degree of a polynomial matrix, in which we wish to have
small eigenvalues (less than 1 in magnitude).
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Nonstationary Methods as an Optimization Problem
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Nonstationary methods as an optimization problem
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Conjugate Gradients (for SPD matrices)

Remark: SPD matrices = Symmetric Positive Definite matrices
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A (first) look at the Conjugate Gradient (CG) algorithm
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Numerical convergence behaviour: stationary or
nonstationary methods
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A link between the Conjugate Gradient method and
Krylov subspace methods

I Y. Saad, Krylov Subspace Methods for Solving Large
Unsymmetric Linear Systems, Mathematics of
Computation 37, 105-126 (1981).

I The purpose of the paper of Y. Saad (1981) is to
generalize the conjugate gradient method regarded as a
projection process onto the Krylov subspace Kk .

I We shall say of a method realizing such a process that it
belongs to the class of Krylov subspace methods.

I Indeed, it will be seen that these Krylov subspace methods
can be efficient for solving large nonsymmetric systems.
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Krylov Subspace Methods in a first glance

I C. Lanczos, An iteration method for the solution of the
eigenvalue problem of linear differential and integral operators, J.
Res. Nat’l Bur. Std. 45 (1950) 255-282.

I W. E. Arnoldi, The principle of minimized iterations in the
solution of the matrix eigenvalue problem, Quarterly of Applied
Mathematics, 9 (1951) 17-29.
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Well known methods Krylov subspace methods

1) Conjugate Gradient method (CG method)
2) Biconjugate Gradient method (BiCG method)
3) Biconjugate Gradient Stabilized (Bi-CGSTAB method)
4) Minimal Residual (MINRES method)
5) General minimal Residual method (GMRES method)
6) Symmetric LQ method(SYMMLQ method)
7) Conjugate Gradient Squared (CGS method)
8) Quasi-Minimal Residual (QMR method)
9) Conjugate Gradients on the Normal Equations (CGNE and

CGNR methods)

Remark: We will discuss in more details the Krylov methods: CG,
Bi-CGSTAB, MINRES and GMRES.
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Well known methods Krylov subspace methods
1) Conjugate Gradient method (CG method)

Magnus R. Hestenes and Eduard Stiefel. Methods of Conjugate
Gradients for Solving Linear Systems. Journal of Research of the
National Bureau of Standards, 49(6) (1952) 409–436.

Obs.: The matrix A (Ax = b) is SPD.

2) Minimal Residual (MINRES method)

Chris Paige Michael Saunders. Solutions of sparse indefinite
systems of linear equations, SIAM J. Numer. Anal 12 (1975)
617–629.

3) General minimal Residual method (GMRES method)

Y. Saad and M. H. Schultz. GMRES: A generalized minimal
residual algorithm for solving nonsymmetric linear systems, SIAM
J. Sci. Stat. Comput., 7 (1986) 856–869.

4) Biconjugate Gradient Stabilized (Bi-CGSTAB method)

H. A. Van der Vorst. Bi-CGSTAB: A Fast and Smoothly Converging
Variant of Bi-CG for the Solution of Nonsymmetric Linear
Systems. SIAM J. Sci. and Stat. Comput. 13(2) (1992) 631–644.
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Preconditioning
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Preconditioning
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Preconditioning (Cont.)

Remark: We will overview steady-state and dynamic models
involving PDEs for a boundary problem and a boundary-initial
boundary problem.
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Preconditioning (Cont.)

Remark: Incomplete Factorizations might also be considered as
follows: Given the matrix A, construct an LU decomposition or a
Cholesky decomposition (if A is symmetric positive definite) that
follows precisely the same steps as the usual decomposition
algorithms, except that a nonzero entry of a factor is generated only if
the matching entry of A is nonzero.
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Some basic concepts of consistency, stability and
convergence of a numerical method
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Topics/prelude

Well-posedness and ill-posedness

Conditioning, stability and sources of error

Forward and backward stability analysis

A priori and a posteriori analysis

Relations between stability and convergence
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More on conditioning, stability and sources of error
Well-posedness and ill-posedness

The concept of a well-posed (correct) problem of mathematical
physics was formulated by the famous French mathematician
Hadamard (1902): Jacques Hadamard (1902). Sur les problèmes
aux dérivées partielles et leur signification physique. Princeton
University Bulletin. pp. 49-52.

At the present time this concept is widely presented in textbooks on
the equations of mathematical physics or partial differential equations
(see, e.g., Lawrence C. Evans, PDE book, AMS 1988).

A problem of mathematical physics or a boundary value problem for a
partial differential equation is called well-posed if the following
conditions are satisfied:

1) a solution of the problem exists;

2) the solution of the problem is unique; and

3) the solution of the problem depends continuously on the data of
the problem.
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More on conditioning, stability and sources of error
Well-posedness and ill-posedness

The well-posedness conditions just formulated require refinement.

Namely, both the solution and the data of the problem are
considered as elements of some function space, and the conditions
for a problem to be well-posed are formulated as follows.

I) A solution of the problem exists for all data belonging to some
closed subspace in a normed linear space of the type Ck , Lp,
H`

p, W `
p , etc... and belongs to a space of the same type. The

subspace is most often either the entire space or a part of the
space on which a finite collection of linear functionals vanishes.

II) The solution of the problem is unique in some analogous space.

III) To infinitesimal variations of the data of the problem in the data
space there correspond infinitesimal variations of the solution in
the solution space

Remark: Problems that are not well-posed in the sense of Hadamard
are termed ill-posed.
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More on conditioning, stability and sources of error
Well-posedness and ill-posedness

Having formulated the concept of a well-posed problem, Hadamard
presented an example of an ill-posed problem for a differential
equation which in his opinion did not correspond to any real physical
formulation.

The Cauchy problem for the Laplace equation that is ill-posed (or not
well-posed) in the sense of Hadamard, since the solution does not
continuously depend on the data of the problem. Such ill-posed
problems are not usually satisfactory for physical applications!

Typical examples of well-posed (correct) problems of mathematical
physics include the Dirichlet problem for Laplace’s equation and the
heat equation with specified initial conditions.

For instance, the backwards heat equation, deducing a previous
distribution of temperature from final data, is not well-posed in the
sense of Hadamard, in that the solution is highly sensitive to changes
in the final data, see, e.g., James V. Beck, Ben Blackwell, Charles R.
St. Clair, Jr, Inverse heat conduction: ill-posed problems, NY: John
Wiley (1985) – see BAE library.
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More on conditioning, stability and sources of error
Well-posedness and ill-posedness

Continuum models (differential or not) must often be discretized in
order to obtain a numerical solution (e.g., in the form Ax = b). While
solutions may be continuous with respect to the initial conditions, they
may suffer from numerical instability when solved with finite precision.

Even if a problem is well-posed, it may still be ill-conditioned,
meaning that a small error in the initial data can result in much larger
errors in the answers. If the problem is well-posed, then it stands a
good chance of solution on a computer using a stable algorithm.

An ill-conditioned problem is indicated by a large condition number.

If it is not well-posed, it needs to be re-formulated for numerical
treatment. Typically this involves including additional assumptions,
such as smoothness of solution. This process is known as
regularization.

Tikhonov regularization is one of the most commonly used for
regularization of linear ill-posed problems. (But this is not the subject
of this course.)
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Now, consider the words of Baxter and Iserles in B.J.C. Baxter &
A. Iserles. “On the foundations of computational mathematics”, in
Handbook of Numerical Analysis XI (P.G. Ciarlet & F. Cucker, eds),
North-Holland, Amsterdam (2003), 3-34.

“It is a sobering thought that, even when a computational solution to a
mathematical problem has been found, often following great
intellectual and computational effort, its merit might be devalued by
poor stability of the underlying algorithm.”

“This state of affairs is sometimes designated as stability or well
posedness or conditioning – purists may argue ad nauseam over the
precise definitions of these concepts, but it is clear that, one way or
the other, they play an instrumental role in computational
mathematics.”

“Another dichotomy, extant in both computational analysis and
computational algebra, is between traditional forward stability
analysis and the approach of backward error analysis (a misnomer:
in reality it refers to backward stability or conditioning analysis) with
respect to the numerical method under consideration.”
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More on conditioning, stability and sources of error
We shall find the terms well posed and stable being used in an
interchanging manner. In general, the concept of well-posedness is
linked to the original continuum (differential) model and the concept of
stability it closely related to conditioning of the underlying model.

For example, a linear system Ax = b of n equations in n unknowns
with a nonsingular coefficient matrix A has exactly one solution. Even
so, if A is nearly singular then a small perturbation of A can produce a
large change in the solution, although not arbitrarily large: the
condition number ||A|| ||A−1|| bounds the relative change.

Caution: Indeed, it is not appropriate to pretend the numerical
method can cure the pathologies of an intrinsically ill-posed problem.

Good references on this subject for more details and rigorous proofs
of these facts (all available in our bibimecc):

[1] K. Atkinson. Theoretical numerical analysis: a functional analysis framework, 3rd ed (2010).

[2] Gene H. Golub and Charles F. Van Loan. Matrix computations, 3rd ed., Baltimore, MD; London: Johns
Hopkins University Press (1996).

[3] V. A. Morozov ; translation editor Z. Nashed, translated by A. B. Aries. Methods for solving incorrectly
posed problems. Springe (1984).
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More on conditioning, stability and sources of error
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More on conditioning, stability and sources of error
Well-posedness and Condition Number of a Problem
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More on conditioning, stability and sources of error
Well-conditioned and ill-conditioned depends on the context of the
problem
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More on conditioning, stability and sources of error
Well-posedness and Ill-posed problems
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More on conditioning, stability and sources of error
Well-conditioned and ill-conditioned depends on the context of the problem
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More on conditioning, stability and sources of error
Well-conditioned and ill-conditioned depends on the context of the problem
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More on conditioning, stability and sources of error

Well-conditioned and ill-conditioned depends on the context of the problem
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More on conditioning, stability and sources of error

Well-conditioned and ill-conditioned depends on the context of the problem: example
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Stability of Numerical Methods

Consistency, convergence and stability issues
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Stability of Numerical Methods

Consistency, convergence and stability issues

Consistency

Remark: (Consistency) The meaning of this definition depends on
the underlying single class of the considered problems at hand (e.g.,
initial value problem for ODEs and initial and boundary value
problems for PDEs).
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Stability of Numerical Methods

Consistency, convergence and stability issues

Strongly consistency (a good dream)

98 / 1



Stability of Numerical Methods
Consistency, convergence and stability issues (example)

99 / 1



Stability, consistency and convergence issues
Well posed (or stable), uniqueness and continuity w.r.t initial datum
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Stability, consistency and convergence issues
Relative/absolute asymptotic condition number of the numerical method
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Stability, consistency and convergence issues
Relative/absolute asymptotic condition number of the numerical method
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Stability, consistency and convergence issues
Relative/absolute asymptotic condition number of the numerical method
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Stability, consistency and convergence issues
Algorithm, numerical approximation and convergence
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Stability, consistency and convergence issues
Algorithm, numerical approximation and convergence
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Stability, consistency and convergence issues
Measures of the convergence, matrix or vector quantities
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Relations between Stability and Convergence
Well posed (stability) + consistency linked to convergent numerical methods
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Relations between Stability and Convergence
Well posed (stability) + consistency linked to convergent numerical methods
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Relations between Stability and Convergence
Well posed (stability) + consistency linked to convergent numerical methods
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Stability, consistency and convergence issues
Well posed (stability) + consistency and convergent numerical methods

A rigorous proof of this theorem is available in Lax-Richtmyer (1956) – see also Dahlquist (1956) – for the case of

linear Cauchy problems and in Richtmyer-Morton (1967) for linear well-posed initial value problems.

P. D. Lax and R. Richtmyer (1956), Survey of the stability of linear finite difference
equations. Communications on Pure and Applied Mathematics 9(2):267-293.

G. Dahlquist (1956) Convergence and Stability in the Numerical Integration of Ordinary
Differential Equations. Math. Scand. 4: 33-53.

R. Richtmyer and K. Morton (1967) Difference Methods for Initial Value Problems. Wiley, New York.
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A priori and a posteriori analysis

Forward and backward stability analysis
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A priori and a posteriori analysis
Forward and backward stability analysis
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A priori and a posteriori analysis
Forward and backward stability analysis
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A priori and a posteriori analysis

Forward and backward stability analysis: a first example
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A priori and a posteriori analysis

Forward and backward stability analysis: a second example
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A priori and a posteriori analysis

Forward and backward stability analysis: a second example
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A priori and a posteriori analysis
It is important to point out the role played by the a posteriori analysis
in devising strategies for adaptive error control.

These strategies, by suitably changing the discretization parameters
(for instance, the spacing between nodes in the numerical integration
of a function or a differential equation), employ the a posteriori
analysis in order to ensure that the error does not exceed a fixed
tolerance.

A numerical method that makes use of an adaptive error control is
called adaptive numerical method. It is also time consuming to use!

In practice, a method of this kind applies in the computational process
the idea of feedback, by activating on the grounds of a computed
solution a convergence test which ensures the control of error within
a fixed tolerance.

In case the convergence test fails, a suitable strategy for modifying
the discretization parameters is automatically adopted in order to
enhance the accuracy of the solution to be newly computed, and the
overall procedure is iterated until the convergence check is passed.
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LEAST SQUARE PROBLEM

QR Factorization and Singular Value Decomposition (SVD)
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Least Squares Problem

Solution of Least Squares Problems
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Least Squares Problem

Solution of Least Squares Problems

120 / 1



Backward Stability of Solving Ax = b with QR

Least Squares Problems
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Proof of Backward Stability
Backward Stability of Solving Ax = b with Householder QR
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Proof of Backward Stability (Cont.)
Backward Stability of Solving Ax = b with Householder QR
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Stability of Gram-Schmidt Orthogonalization
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The method of normal equations
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Summary of Algorithms for Least Square problems
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Singular Value Decomposition (SVD)

Some remarks:
I A ∈ Cn×n , U ∈ Cn×n , Σ ∈ Cn×n , V∗ ∈ <n×n .

I Note that the diagonal matrix Σ has the same shape as A even when A is not square, but U and V∗

are always square unitary matrices.

I The singular values of a matrix A are precisely the lengths of the semi-axes of the hyperellipsoid E
defined by E = {Ax : ||x||2 = 1}.
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SVD (Geometric Observation)

The image2 shows:

Upper Left: The unit disc with the two canonical unit vectors. It is clear that the image of the unit

sphere in <n under a map A = UΣV∗ must be a hyperellipse in <n .

Lower Left: The action of V∗ on the unit disc. This is just a rotation. The unitary map V∗

preserves the sphere.

Lower Right: The action of ΣV∗ on the unit disc. Sigma scales in vertically and horizontally. The

diagonal matrix Σ stretches the sphere into a hyperellipse aligned with the canonical basis.

Upper Right: Unit disc transformed with M and singular Values σ1 and σ2 indicate. Finally, the latter

unitary map U rotates or reflects the hyperellipse without changing its shape.

2
thanks to wikipedia
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Two Different Types of SVD
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SVD versus Eigenvalue Decomposition
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Existence of SVD (sketch of the proof)
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Existence of SVD: Based on 2-norm and prove by induction

Existence and Uniqueness (Theorem): Every matrix A ∈ Cn×n has
a singular value decomposition A = UΣV ∗. Furthermore, the singular
values {σi} are uniquely determined, and, if A is square and the σi

are distinct, the left and right singular vectors {ui} and {vi} are
uniquely determined up to complex signs (i.e., complex scalar factors
of absolute value 1). Gene H. Golub and Charles F. Van Loan. Matrix
computations, 3rd ed., Johns Hopkins University Press (1996).

Numerical methods for the SVD are based on the QR (Francis)
iterative algorithms and its variants; Golub & Van Loan(1996).
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BACKGROUND IN VECTORS, MATRICES AND NORMS

ORIENTED TO NUMERICAL LINEAR ALGEBRA

Obs.: For more details on these topics see
list of references at the course syllabus

MS993/MT404
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Matrices
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Matrices (Cont.)
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Square Matrices and Eigenvalues
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Square Matrices and Eigenvalues (Cont.)
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Square Matrices and Eigenvalues (Cont.)
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Square Matrices and Eigenvalues (Cont.)

139 / 1



Square Matrices and Eigenvalues (Cont.)
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Types of Matrices
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Types of Matrices (Cont.)
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Types of Matrices (Cont.)
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Types of Matrices (Cont.)
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Vector Inner Products and Norms
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Vector Inner Products and Norms (Cont.)
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Vector Inner Products and Norms (Cont.)
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Vector Inner Products and Norms (Cont.)
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Vector Inner Products and Norms (Cont.)
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Matrix Norms
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Matrix Norms (Cont.)
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Matrix Norms (Cont.)
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Matrix Norms - The Frobenius norm of a matrix
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Matrix Norms (Cont.)
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Matrix Norms (Cont.)

155 / 1



Subspaces, Range, and Kernel
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Subspaces, Range, and Kernel (Cont.)
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Orthogonal Vectors and Subspaces
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Orthogonal Vectors and Subspaces (Cont.)

The Gram-Schmidt process
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Orthogonal Vectors and Subspaces (Cont.)
The Gram-Schmidt process
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Orthogonal Vectors and Subspaces (Cont.)

The Modified Gram-Schmidt process
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Orthogonal Vectors and Subspaces (Cont.)

The Modified Gram-Schmidt process
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Orthogonal Vectors and Subspaces (Cont.)
The Householder reflectors algorithm
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Orthogonal Vectors and Subspaces (Cont.)

The Householder reflectors algorithm
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Orthogonal Vectors and Subspaces (Cont.)
The Householder reflectors algorithm
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Orthogonal Vectors and Subspaces (Cont.)
The Householder reflectors algorithm
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Orthogonal Vectors and Subspaces (Cont.)
The Householder reflectors algorithm
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Orthogonal Vectors and Subspaces (Cont.)

The Householder reflectors algorithm
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Orthogonal Vectors and Subspaces (Cont.)

The Householder reflectors algorithm
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Orthogonal Vectors and Subspaces (Cont.)
The Householder reflectors algorithm
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Canonical Forms of Matrices
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Canonical Forms of Matrices
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Linear Independence of Eigenvectors
Most matrices have an ample supply of eigenvectors
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REDUCTION TO THE DIAGONAL FORM

DIAGONALIZABLE MATRICES
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Reduction to the Diagonal Form

Diagonalizable matrices
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Reduction to the Diagonal Form

Diagonalizable matrices

Remark: What are the eigenvectors of the 2× 2 zero matrix ?
The eigenvectors are clearly [1 0]> and [0 1]> (and any
multiple of these). The particular 2× 2 zero matrix is
considered for simplicity.
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The Jordan Canonical Form

Remark: For more details on this topic, see e.g., [1] Paul R.
Halmos, Finite-Dimensional Vector Spaces, Springer Verlag, New
York, 1958. or [2] Kenneth Hoffman and Ray Kunze. Linear algebra,
2nd ed, Englewood Cliffs, NJ, Prentice-Hall (1971).
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The Jordan Canonical Form (Cont.)
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The Schur Canonical Form

Remark: Not all matrices are diagonalizable, but we can transform
any square matrix into triangular form by means of a unitary (or
orthogonal) similarity. This is the consequence of the Schur theorem.
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The Schur Canonical Form

Some Remarks on Schur canonical form

1) Notice that the Schur form is not unique, because the eigenvalues
may appear on the diagonal of R in any order.

2) This introduces complex numbers even when A is real. When A is
real, we prefer a canonical form that uses only real numbers,
because it will be cheaper to compute.

3) This means that we will have to sacrifice a triangular canonical
form and settle for a block-triangular canonical form.
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The Schur Canonical Form (proof)
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The Schur Canonical Form (proof)
How people actually find it ? (Francis 1961, Kublanovskaja
1962), See book David S. Watkins (3ed,2010)

1) First, notice that this proof is not constructive as we assume
the knowledge of an eigenpair (λ,u)

2) It bears noting that in practice, people do not use repeated
Gram-Schmidt to find this Schur decomposition!

3) Schur decomposition of a given matrix is known to be
numerically computed by QR algorithm or its variants.

4) In other words, the roots of the characteristic polynomial
corresponding to the matrix are not necessarily computed
ahead in order to obtain its Schur decomposition.

5) Conversely, QR algorithm can be used to compute the roots
of any given characteristic polynomial by finding the Schur
decomposition of its companion matrix.

6) We conclude by pointing out that the Schur (and the
quasi-Schur) form of a given matrix are in no way unique!
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LEAST SQUARE PROBLEM

QR Factorization and Singular Value Decomposition (SVD)
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Least Squares Problem

Solution of Least Squares Problems
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Least Squares Problem

Solution of Least Squares Problems
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Backward Stability of Solving Ax = b with QR

Least Squares Problems
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Proof of Backward Stability
Backward Stability of Solving Ax = b with Householder QR
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Proof of Backward Stability (Cont.)
Backward Stability of Solving Ax = b with Householder QR
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Stability of Gram-Schmidt Orthogonalization
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The method of normal equations
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Summary of Algorithms for Least Square problems
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Singular Value Decomposition (SVD)

Some remarks:
I A ∈ Cn×n , U ∈ Cn×n , Σ ∈ Cn×n , V∗ ∈ <n×n .

I Note that the diagonal matrix Σ has the same shape as A even when A is not square, but U and V∗

are always square unitary matrices.

I The singular values of a matrix A are precisely the lengths of the semi-axes of the hyperellipsoid E
defined by E = {Ax : ||x||2 = 1}.
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SVD3 (Geometric Observation)

The image shows:

Upper Left: The unit disc with the two canonical unit vectors.

Upper Right: Unit disc transformed with M and singular Values σ1 and σ2 indicated

Lower Left: The action of V∗ on the unit disc. This is just a rotation.

Lower Right: The action of ΣV∗ on the unit disc. Sigma scales in vertically and horizontally.

3thanks to wikipedia (image)
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Two Different Types of SVD
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SVD versus Eigenvalue Decomposition
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Existence of SVD (sketch of the proof)
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Existence of SVD (Cont.)

Existence and Uniqueness (Theorem): Every matrix A ∈ Cn×n has
a singular value decomposition A = UΣV ∗. Furthermore, the singular
values {σi} are uniquely determined, and, if A is square and the σi

are distinct, the left and right singular vectors {ui} and {vi} are
uniquely determined up to complex signs (i.e., complex scalar factors
of absolute value 1). See detilas ain Gene H. Golub and Charles
F. Van Loan. Matrix computations, 3rd ed., Johns Hopkins
University Press (1996).
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Some results of linear algebra behind the iterative methods
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Some results of linear algebra behind the iterative
methods

In what follows we will briefly highlight some results that are
important in the study of convergence of iterative methods.

The interested reader is referred to the below list of references
for further information linked to the subject of numerical linear

algebra as well as detailed proofs.
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Powers of Matrices
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Powers of Matrices
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Powers of Matrices
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Powers of Matrices - Jordan canonical form
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Normal and Hermitian Matrices
Normal matrices
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Normal and Hermitian Matrices

Normal Matrices
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Normal and Hermitian Matrices

Normal Matrices
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Normal and Hermitian Matrices

Normal Matrices
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Normal and Hermitian Matrices

Normal Matrices
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Normal and Hermitian Matrices
Normal Matrices
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Normal and Hermitian Matrices Normal Matrices
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Normal and Hermitian Matrices
Normal Matrices
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Normal and Hermitian Matrices

Normal Matrices
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Normal and Hermitian Matrices

Normal Matrices

213 / 1



Normal and Hermitian Matrices

Normal Matrices
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Normal and Hermitian Matrices

Hermitian Matrices

Remark: If, in addition, the matrix is real, then the eigenvectors can
be chosen to be real. Since a Hermitian matrix is normal in the
above, the following result is a consequence of Theorem 1.14.
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Normal and Hermitian Matrices
Hermitian Matrices
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Normal and Hermitian Matrices Hermitian Matrices
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Normal and Hermitian Matrices Hermitian Matrices

218 / 1



Normal and Hermitian Matrices Hermitian Matrices
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Normal and Hermitian Matrices Hermitian Matrices
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Nonnegative Matrices, M-Matrices
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Nonnegative Matrices, M-Matrices

Remark: For a proof of the itens in the Proposition 1.24 see Roger
A. Horn and Charles R. Johnson. Matrix analysis, Cambridge, MA,
Cambridge University Press (1985).
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Nonnegative Matrices, M-Matrices
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Nonnegative Matrices, M-Matrices
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Nonnegative Matrices, M-Matrices
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Nonnegative Matrices, M-Matrices
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Nonnegative Matrices, M-Matrices

A theorem which has important consequences on the analysis of
iterative methods (e.g. stationary methods linked to boundary value
problem, as such the Poisson problem) as well as in the mathematical
sciences and applications (e.g., Economics) will now be stated in
what follows (see, e.g., also the references below and cited therein):

I Mohamed Abd El Aziz, Wael Khidr, Nonnegative matrix
factorization based on projected hybrid conjugate gradient
algorithm, Signal, Image and Video Processing 9(8) (2015)
1825-1831.

I Abraham Berman and Robert J. Plemmons, Nonnegative
Matrices in the Mathematical Sciences (Classics in Applied
Mathematics), SIAM, 1994.
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Nonnegative Matrices, M-Matrices
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Nonnegative Matrices, M-Matrices
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Nonnegative Matrices, M-Matrices
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Nonnegative Matrices, M-Matrices (M-Matrices)
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Nonnegative Matrices, M-Matrices (M-Matrices)
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Nonnegative Matrices, M-Matrices (M-Matrices)
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Nonnegative Matrices, M-Matrices (M-Matrices)
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Positive-Definite Matrices
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Positive-Definite Matrices
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Positive-Definite Matrices
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Positive-Definite Matrices
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Positive-Definite Matrices
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Positive-Definite Matrices
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Projection Operators

Projection operators or projectors play an important role in
numerical linear algebra, particularly in iterative methods for
solving various matrix problems. See the following the
references (also used in this course) for more details:
James W. Demmel. Applied numerical linear algebra,
Philadelphia, PA, SIAM (1997).
Lloyd N. Trefethen, David Bau III. Numerical linear algebra,
Philadelphia, PA, SIAM (1997).
However, in what follows, we will introduce these operators
from a purely algebraic point of view and gives a few of their
important properties.
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Range and Null Space of a Projector
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Range and Null Space of a Projector
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Range and Null Space of a Projector
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Range and Null Space of a Projector
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Range and Null Space of a Projector
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Matrix Representations
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Orthogonal and Oblique Projectors
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Orthogonal and Oblique Projectors
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Orthogonal and Oblique Projectors
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Orthogonal and Oblique Projectors
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Properties of Orthogonal Projectors
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Properties of Orthogonal Projectors
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Existence (and uniqueness) of a solution

From the numerical viewpoint is far more complex!
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Existence (and uniqueness) of a solution
From the numerical viewpoint is far more complex!

Gilbert Strang. Linear algebra and its applications, 3rd ed.,
Brooks/Cole, Thomson Learning,(1988). Kenneth Hoffman and Ray

Kunze. Linear algebra, 2nd ed, Englewood Cliffs, NJ, Prentice-Hall
(1971).
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