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» O curso MS933/MT404
Métodos Computacionais em Algebra Linear

» Fornecer uma visdo teérica e desenvolver habilidades
praticas computacionais de métodos numéricos aplicados
para resolver problemas de algebra linear numérica em
grande escala. Particular énfase recai sobre sistemas de
equagoes lineares de grande porte e de problemas
relacionados.

» Com efeito, observa-se que o desenvolvimento de tais
métodos computacionais em algebra linear tem sua base
em resultados matematicos rigorosos e, portanto, ndo sao
dependentes de uma linguagem de programacao
particular.



David M. Young (1971)

“The availability of very high-speed computers with large, fast
memories has made it possible to obtain accurate numerical
solutions of mathematical problems which, although algorithms
for handling them were well known previously, could not be
used in practice because the number of calculations required
would have been prohibitive. A problem for which this is
particularly true is that of solving a large system of linear
algebraic equations where the matrix of the system is very
sparse.... These problems, in turn, arise in studies in such
areas as neutron diffusion, fluid flow, elasticity, steady-state
heat flow, and weather prediction...”



ORGANIZACAO DA EMENTA EM TOPICOS

Pretende-se discutir os itens 1) e 2) a sequir ao longo de todo o
curso, incluindo aplicacbes pertinentes de modelos Ax = b



ORGANIZACAO DA EMENTA EM TOPICOS

1) Algoritmos basicos para operagdes com vetores e matrizes.
Matrizes com estruturas especiais: operacoes e
armazenamento. Normas.

2) Analise de sensibilidade de sistemas lineares: Numero de
condicdo. Condicionamento de um sistema linear.

3) Métodos diretos para resolucao de sistemas lineares:
Fatoragdes: LU e Cholesky.

4) Métodos iterativos (indiretos) para resolucao de sistemas
lineares: 4.1) Métodos de ponto fixo ou métodos
estacionarios (e.g., Richardson, Gauss-Jacobi,
Gauss-Seidel e ) e 4.2) Métodos dos gradientes conjugados
(Métodos em Subespacos de Krylov).

5) O problema de quadrados minimos. Fatoracdes QR e SVD.



Motivation

» Nonlinear dynamics models (e.g. PDESs) provide a
quantitative description for many central models in
physical, biological, engineering sciences, and more...

» Although a rich development of mathematical theories to
solve PDEs and Nonlinear models have been achieved,
analytical techniques provide only a limited account for the
array of complex phenomena governed by such models
— The Abel Symposium (2010 Edition), Olso (Norway).

— International Congress of Mathematicians (ICM 2014),
Seoul (Korea).

— The International Congress on Industrial and Applied
Mathematics (ICIAM 2015), Pequim (China)

» Thus, numerical analysis and computational methods
for solving nonlinear models have emerged as the most
versatile tool to complement mathematical theory and
real-world experiments
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FIG 1. TIPOS DE ERROS E INCERTEZAS

We are primary interested in numerically solving
Ax=b

where matrix A is n x nand nonsingular, along with vector x is
n x 1 and vector bis n x 1 (with b # 0). (We will also discuss
the case when A is singular)



MOTIVATION:

GOOGLE AND OCEAN CIRCULATION

GOOGLE: Kurt Bryan and Tanya Leise, The US
25,000,000,000 Eigenvector: The Linear Algebra behind
Google, SIAM Rev., 48(3) (2006) 569-581

OCEAN CIRCULATION: M. B. van Gijzen, C. B. Vreugdenhil,
and H. Oksuzoglu, The Finite Element Discretization for
Stream-Function Problems on Multiply Connected Domains, J.
Comp. Phys., 140 (1998) 30-46.



More good references ...

Tobin A. Driscoll, Kim-Chuan Toh, and Lloyd N. Trefethen. From
Potential Theory to Matrix Iterations in Six Steps. SIAM Rev., 40(3)
(2006) 547-578.

M. Benzi, G. H. Golub, J. Liesen. Numerical solution of saddle point
problems Acta numerica, 14 (2005) 1-137.

Yousef Saad, Henk A. van der Vorstb. lterative solution of linear
systems in the 20th century Journal of Computational and Applied
Mathematics, 123(12) (2000) 1-33.

Y. Saad. Practical use of polynomial preconditionings for the
conjugate gradient method SIAM Journal on Scientific and Statistical
Computing, 6(4) (1985) 865-881.

Mark Embree, Josef A. Sifuentes, Kirk M. Soodhalter, Daniel B.
Szyld, and Fei Xue. Short-Term Recurrence Krylov Subspace
Methods for Nearly Hermitian Matrices. SIAM Journal on Matrix
Analysis and Applications, 33(2) (2012) 480-500.

Klaus Schiefermayr. A Lower Bound for the Norm of the Minimal
Residual Polynomial Constructive Approximation, 33(3) (2011)
425-432.
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INTRODUCTORY PART:

CLASSIFICATION OF NUMERICAL METHODS FOR
SOLVING Ax = b



Introductory part: Classification of numerical methods for
solving Ax = b

» The numerical solution methods for linear systems of the
form Ax = b are broadly classified into direct methods
and the iterative methods.

» For large systems, direct methods become impractical due
to the phenomenon of fill-in or fill, caused by the
generation of new entries during the factorisation phase.

» lterative methods generate a sequence of approximations
that only converges in the limit to the solution. Beginning
with a given approximate solution, these methods
modify the components of the approximation in each
iteration, until a required convergence is achieved.



» Thus, roughly speaking numerical methods for solving
linear systems of equations can generally be divided into
two classes:

» Direct methods. In the absence of roundoff error such
methods would yield the exact solution within a finite
number of steps.

» Iterative methods. These are methods that are useful for
problems involving special, very large matrices.



OVERVIEW OF DIRECT METHODS



» Direct Solution Methods

— Gaussian Elimination and LU Decomposition

— Special Matrices

— Ordering Strategies



Gaussian Elimination and LU Decomposition

Assumptions:
@ The given matrix A is real, n x n and nonsingular.

@ The problem Ax = b therefore has a unique solution x for any
given vector b in R".

The basic direct method for solving linear systems of equations is
Gaussian elimination. The bulk of the algorithm involves only the
matrix A and amounts to its decomposition into a product of two
matrices that have a simpler form. This is called an LU
decomposition.
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How to use it

@ solve linear equations when A is in upper triangular form. The
algorithm is called backward substitution.

@ transform a general system of linear equations into an upper
triangular form, where backward substitution can be applied.
The algorithm is called Gaussian elimination.

18/1



Backward Substitution

Start easy:
@ If Ais diagonal:

22

dnn

then the linear equations are uncoupled and the solution is

obviously
b
T S e T 3
=
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Triangular Systems

An upper triangular matrix

d11 d1z2 ccc dip

=
A— 122

dnn

where all elements below the main diagonal are zero:
aj =0,%i > j.
Solve backwards: The last row reads a,,x, = b,,, 50 X, = 2= .

dnn

Mext, now that we know x,, the row before last can be written as
h —a
3n-1n-1Xn-1= Bn_1 — @n_1,0Xn, 50 Xp_1 = =L Next the

dp—1,n—1
previous row can be dealt with, etc. We obtain the backward

substitution algorithm.
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Computational Cost - Naive but Useful

What is the cost of this algorithm? In a simplistic way we just
count each floating point operation (such as + and #) as a flop.
The number of flops required here is

n—1

1+Z[[n— C1) 4 (- k) +2) w23 (n—k) =221 ”” ~ .

k=1 k=1

Simplistic but not ridiculously so: doesn't take into account data
movement between elements of the computer's memory hierarchy.
In fact, concerns of data locality can be crucial to the execution of
an algorithm. The situation is even more complex on
multiprocessor machines. But still: gives an idea. .
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LU Decomposition / Factorization

The Gaussian elimination procedure decompeoses A into a product
of a unit lower triangular matrix L and an upper triangular matrix
U. This is the famous LU decomposition. Together with the
ensuing backward substitution the entire solution algorithm for
Ax = b can therefore be described in three steps:

@ Decompositiomn:
A=LU

© Forward substitution: solve
Ly =hb.

© Backward substitution: solve

22/1



Pivoting - It is noteworthy that A, 0 < e << 1

In a nutshell, perform permutations to increase numerical stability.
Trivial but telling examples:
For

or

G.E. will fail (for A) or perform poorly (for A).

Mothing wrong with the problem, it's the algorithm to blame!

@ Partial pivoting (not always stable but standard)

@ Complete pivoting (stable but too expensive)
@ Rook pivoting
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Pivoting - It is noteworthy that A., 0 < e << 1 (Cont.)

In a nutshell, perform permutations to increase numerical stability.
Trivial but telling examples:

For
01
4= (1 o)

;)

G.E. will fail (for A) or perform poorly (for A.).

or

Mothing wrong with the problem, it's the algorithm to blame!

@ Partial pivoting (not always stable but standard)
@ Complete pivoting (stable but too expensive)
@ Rook pivoting

Neal and Poole (1992) presented the so-called Rook pivoting
strategy. In short, this pivoting strategy appears to be

intermediate between partial pivoting and complete pivoting in
terms of efficiency and stability. For more details see Project 1! ., ,



Special Matrices

@ Symmetric Positive Definite. A matrix A is symmetric
positive definite (SPD) if A = AT and xT Ax > 0 for any
nonzero vector x # 0. (All 5PD matrices necessarily have
positive eigenvalues.)

In the context of linear systems — Cholesky Decompaosition:

A= FFT,

e Mo pivoting required
s Half the storage and work. (But still O(n®) and O{n*)
respectively. |
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Special Matrices (Cont.)

& Marrow Banded.
I(ri'u --- dig A

dpl

l\ 5n:n—p+1 oo dan /]

@ Significant savings, if bandwidth is small: O{n) work and
storage.
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A useful numerical tip

Mever invert a matrix explicitly unless your life depends on it.
In MATLAR, choose backslash over inv.
Reasons:

@ More accurate and efficient

@ For banded matrices, great saving in storage
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LU vs. Gaussian Elimination (why store L?)

If you did all the work, might as well record it!

One good reason: solving linear systems with multiple right hand
sides.
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Permutations and Reordering Strategies

29
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Permutations and Reordering Strategies
Riddle: Which matrix is better to work with?

A A
= = 0 0 0 w
A= = 0 = 0 0 .
= 0 0 = 0 J
= 0 0 0 =
= 0 0 0 =
0 = 0 0 =
E = 0 0 = 0 = |.
0 0 0 = x}
A A

B is a matrix obtained by swapping the first and the last row and
column of A
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Permutation Matrices

(PAPT)(Px) = Pb.
Loock at Px rather than x, as per the performed permutation.

o If Ais symmetric then so is PAPT. We can define the latter
matrix as B and rewrite the linear system as

By =,

where y = Px and ¢ = Fb.

e In the example B = PAPT where P is a permutation matrix
associated with the vector p=(n,2,3.4,....n—2,n—1,1)7.
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Sparse matrices, graphs, and tree elimination

At least two possible ways of aiming to reduce the storage and
computational work:

@ Reduce the bandwidth of the matrix.

@ Reduce the expected fillin in the decomposition stage.

One of the most commonly used tools for doing it is graph theory.
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Sparse matrices, graphs, and tree elimination

Putting in x to indicate a nonzero element, we have

X X X X X X X X X X X
X X X X X X X X
X X = | X X X X X X
X X X X X X X X
X X X X X X X X

That is, L and U/ have many more nonzeros than A. These nonzero locations
that appear in L and U and not in A are called fill-in. On the other hand,
if we cyclically permute the rows and columns of A, we have

X X X x X
X X X X X

* x| = x X x

®ooox x x X

xooxX XK X X xooX X X X x

That is, the factorization of PAPT has no fill-in.
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Sparse matrices, graphs, and tree elimination (Cont.)

A sparse matrix A can be viewed as an adjacency matrices for an associ-
ated graphs: make one node for each row, and connect node 7 to node j if
Aij # 0. The graphs for the two “arrow” matrices above are:

These graphs of both our example matrices are trees, and they differ only
in how the nodes are labeled. In the original matrix, the root node is assigned
the first label; in the second matrix, the root node is labeled after all the
children. Clearly, the latter label order is superior for Gaussian elimination.
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Sparse matrices, graphs, and tree elimination (Cont.)

This turns out to be a general fact: if the graph for a (structurally symmetric)
sparse matrix S is a tree, and if the labels are ordered so that each node
appears after any children it may have, then there is no fill-in: that is, L and
U have nonzeros only where S has nonzeros.

Let us see one more example for a structurally symmetric
sparse matrix S. In what follows, we have S = A or S = A.
More good references ... David S. Watkins, Fundamentals of Matrix
Computations, New Jersey: John Wiley & Sons (2 ed., 2002) e (3 ed.,
2010).

Timothy A. Davis, Direct methods for sparse linear systems
(Fundamentals of algorithms Series), PA, SIAM (2006).

35
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Sparse matrices, graphs, and tree elimination (Cont.)

L 1 1 1.
1 2 2 1
1 i
| 1 2 3 15 18 I I 2 1
1 0 1
L
1 22 F 18 & & 82 i 4 5
P2 % 'F 18 4 2.1 05T
6 1 6255  (LTR02
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Figure. Top: arrowhead matrix A € R”*7 and its Cholesky
factor L = chol(A). Bottom: effect of reversing the numbering.
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Edges and Vertices: Optimality criteria

@ How to assure that the amount of work for determining the
ordering does not dominate the computation. As you may
already sense, determining an 'optimal’ graph may be quite a
costly adventure.

@ How to deal with 'tie breaking’ situations. For example, if we
have an algorithm based on the degrees of vertices, what if
two or more of them have the same degree: which one should
be labeled first?
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Edges and Vertices: Optimality criteria (Cont.)

e Reverse Cuthill McKee (RCM): aims at minimizing bandwidth.

@ minimum degree (MMD) or approximate minimum degree
(AMD): aims at minimizing the expected fill-in.
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Edges and Vertices: Optimality criteria (Cont.)

0 0
20 20
40 40
60 60
80 80
100 100
120 120
0 50 100 0 50 100

original ordering (2729) random reordering (3229)

Fig. Spy plots of Cholesky factors of reorderings of a discrete
Laplacian matrix. For each ordering, the number of nonzeros is
given in parentheses: original (2729) < random (3229).
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Edges and Vertices: Optimality criteria (Cont.)
0 0

20 20
40 40 [
60 60
80 80
100 100
120 120
0 50 100 0 50 100
original ordering (2729) reverse Cuthill-Mckee (2006)

Fig. Spy plots of Cholesky factors of reorderings of a discrete
Laplacian matrix. For each ordering, the number of nonzeros is
given in parentheses. original (2729) > reverse Cuthill-Mckee
(2006).
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20 20
40 40
60 60
80 80
100 100
120 120+
0 50 100 0 50 100
original ordering (2729) approximate minimum degree (1344)

Fig. Spy plots of Cholesky factors of reorderings of a discrete
Laplacian matrix. For each ordering, the number of nonzeros is
given in parentheses. original (2729) > approximate minimum
degree (1344).
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Edges and Vertices: Optimality criteria (Cont.)

» One small example proves nothing, but extensive tests on
larger matrices have confirmed that the approximate
minimum-degree algorithm does significantly better than
reverse Cuthill-McKee on a wide variety of problems.

» However, effective exploitation of the good fill properties of
the approximate minimum-degree algorithm requires use
of a more flexible data structure for sparse matrices since
the fill is not restricted to a narrow band.

» In contrast, if we use the reverse Cuthill-McKee algorithm,
we can use a simple band or envelope scheme that
accommodates the fill automatically.

» For more details, see Project 1

42
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» Conditioning and Accuracy

— Upper bound on the error

— The Condition Number



Conditioning and Accuracy: Upper bound on the error

Suppose that, using some algorithm, we have computed an
approximate solution % We would like to be able to evaluate the
absolute error ||x — X||, or the relative error

[ — ]|

||

@ Woe do not know the error; seek an upper bound, and rely on
computable quantities, such as the residual

r=>b — Ax.

@ A stable Gaussian elimination variant will deliver a residual
with a small norm. The question is, what can we conclude
from this about the error in x7
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Conditioning and Accuracy: Upper bound on the error
r = b— A% = Ax — A% = A(x — &).

So

Then
I — x| = JA" e < [JAT]]Ir]l.

This gives a bound on the absolute error in X in terms of |4~
But usually the relative ermr is more meaningful. Since
bl < ||A]|||x]|| implies I llll_ﬁlll_l’ we have

IIX—“II Al
<||A7"
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Conditioning and Accuracy: Condition number

We therefore define the condition number of the matrix A as
K(A) = [|A[[lA7Y

and write the bound obtained on the relative error as

Ix=%1 _ ol
w = e

In words, the relative error in the solution is bounded by the
condition number of the matrix A times the relative error in the
residual.
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Conditioning and Accuracy: Properties and facts!

@ Range of values:
1= 1] = A~ A]| < w(A),

(i.e. a matrix is ideally conditioned if its condition number
equals 1), and &(A) = oc for a singular matrix.

@ Orthogonal matrices are perfectly conditioned.

o If Ais SPD, ra(A) = 4.

@ Condition number is defined for any (even non-square)
matrices by the singular values of the matrix.

@ When something goes wrong with the numerical solution -
blame the condition number! (and hope for the best)

@ One of the most important areas of research: preconditioning.
(To be discussed later.)

@ What's a well-conditioned matrix and what's an
ill-conditioned matrix?

Motivation: The previous facts point out to the need an
alternative for solving Ax = b. Iterative methods!

47/
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OVERVIEW OF ITERATIVE METHODS

48
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» Iterative Methods

— Motivation

— Basic Stationary Methods

— Nonstationary Methods

— Preconditioning

49
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Motivation

50
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Drawbacks of Direct Solution Methods

The Gaussian elimination algorithm and its variations such as the
LU decomposition, the Cholesky method, adaptation to banded
systems, etc., is the approach of choice for many problems. There
are situations, however, which require a different treatment.
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Drawbacks of Direct Solution Methods (Cont.)

@ The Gaussian elimination (or LU decompaosition) process may
introduce fill-in, i.e. L and U/ may have nonzero elements in
locations where the original matrix A has zeros. If the amount
of fill-in is significant then applying the direct method may
become costly. This in fact occurs often, in particular when
the matrix is banded and is sparse within the band.

@ Sometimes we do not really need to solve the system exactly.
(e.g. nonlinear problems.) Direct methods cannot accomplish
this because by definition, to obtain a solution the process
must be completed; there is no notion of an early termination
or an inexact (yet acceptable) solution.
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Drawbacks of Direct Solution Methods (Cont.)

@ Sometimes we have a pretty good idea of an approximate
guess for the solution. For example, in time dependent
problems (warm start with previous time solution). Direct
methods cannot make good use of such information.

@ Sometimes only matrix-vector products are given. In other
words, the matrix is not available explicitly or is very
expensive to compute. For example, in digital signal
processing applications it is often the case that only input and
output signals are given, without the transformation itself
explicitly formulated and available.
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MOTIVATION:

FLUID DYNAMICS IN POROUS MEDIA

PDEs, HYPERBOLIC CONSERVATION LAWS AND
BALANCE LAWS

54
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A possible motivation for iterative methods

What motivates us to use iterative schemes is the possibility that
inverting A may be very difficult, to the extent that it may be
worthwhile to invert a much ‘easier’ matrix several times, rather
than inverting A directly only once.
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A Canonical Example: Discrete 2D Laplacian
J -1

05

[ ? |
SRR

and | denotes the identity matrix of size N.

5-point discretization of the 2D Laplacian (Poisson equation)



A Small Example: Sparsity Pattern

For instance, if N = 3 then

4 -1 0|-1 0 O 0
-1 4 1|0 -1 0 0
0 -1 4]0 0 -1|0
-1 0 0|4 -1 0|-1

A=

o o o|o o
o o oo

|

5-point discretization of the 2D Laplacian (Poisson equation)
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Basic Stationary Methods

58
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Stationary Methods (fixed point iteration)

Given Ax = b, we can rewrite as x = (/ — A)x + b, which yields
the iteration
xk_'_l = [fl — A}xk + b.

From this we can generalize: for a given splitting A= M — N, we
have Mx = Nx + b, which leads to the fixed point iteration

Mxk_,_l = Nx; + b.
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Stationary Methods (The Basic Procedure)

Suppose that A= M — N is a splitting, and that Mz = r is much
easier to solve than Ax = b. Given an initial guess xg,

e =X —Xp

is the error and
Aep = b — Axg = ry.

Motice that rg is computable whereas eg is not, because x is not
available. Since x = xg + ey = xg + A 'y, set

Me = rg,

and then
X, — Xp + e

is our new guess. X3 is hopefully closer to x than xg.
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Stationary Methods: The hard task of finding a good M

The matrix M should satisfy two contradictory requirements:

@ It should be close to A in some sense (or rather, M~! should
be close to A~1).

@ It should be much easier to invert than A.
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Stationary Methods: Jacobi, Gauss-Seidel, SOR and

others

It all boils down to the choice of M. If A= D + E + F is split into
diagonal D, strictly upper triangular part £ and strictly lower
triangular part F, then:

e Jacohi: M = D.
@ Gauss-Seidel: M =D + E.
@ S0OR: a parameter dependent ‘improvement’ of Gauss-Seidel.

p(M;‘wH] a3 a function of w
1

62/1



Preliminary Summary: Benefits & Drawbacks

[Method ____|Benefits ______________|Drawbacks |

Forward/ Fast (n?) Applies only to upper- or
backward lower-triangular matrices
substitution

Gaussian Works for any [non-singular] matrix ~ O(n?)

elimination

LU Works for any matrix (singular O(n?) initial factorization

decomposition  matrices can still be factored); can (same process as Gauss)
re-use L, U for different b values;
once factored uses only forward/
backward substitution

Cholesky O(n?) but with ¥ storage and Still O(n?); only for

computation of Gauss symmetric positive definite
Band-diagonal  O(w?n) where w = band width Only for band diagonal
elimination

Exercise: convince yourself about the computational
complexity displayed at the columns: benefits and drawbacks !

63/
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Preliminary Summary: Benefits & Drawbacks (Cont.)

Sherman-Morrison

Iterative refinement

Jacobi

Gauss-Seidel

SOR

Conjugate gradient

Update step is O(n?)

Can be applied following any
solution method

More appropriate than
elimination for large/sparse
systems; can be parallelized

More appropriate than

elimination for large/sparse; a
bit more powerful than Jacobi

Potentially faster than Jacobi,
Gauss-Seidel for large/sparse
systems

Fast(er) for large/sparse
systems; often doesn't require
all n iterations

Only for rank-1 changes;
degrades with repeated
iterations (then use Woodbury
instead)

Requires 2x storage, extra
precision for residual

Can diverge when not
diagonally dominant; slow

Can diverge when not
diagonnally dominant or
symmetric/positive-definite;
slow; can't parallelize

Requires parameter tuning

Requires symmetric positive
definite (otherwise use bi-
conjugate)

64/
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Nonstationary Methods

Remark: Stationary versus Nonstationary Methods: What is
the best (if any) ?

65
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Nonstationary Methods (Krylov subspaces)

The trouble with stationary schemes is that they do not make use
of information that has accumulated throughout the iteration.
How about trying to optimize something throughout the iteration?
For example,
i1 = Xg + gl

Adding b to both sides and subtracting the equations multiplied by
A

b — Axk+l = b — Axk — f?qurk.

It is possible to find g that minimizes the residual. Notice:
ry = Pk(.rq.}l'u.
Modern method work hard at finding ‘the best’ p,.

Remark1: Unlike stationary methods, nonstationary methods do not
have an iteration matrix !

Remark2: Looking more closely at this error (residual) r, we see that
pk(A) is a k' degree of a polynomial matrix, in which we wish to have
small eigenvalues (less than 1 in magnitude).

66/
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Nonstationary Methods as an Optimization Problem



Nonstationary methods as an optimization problem

The methods considered here can all be written as

Xyl = X + 0Py,

where the vector p, is the search direction and the scalar oy is the
step size. The simplest such non-stationary scheme is obtained by
setting pg = rg, i.e. My = al, with | the identity matrix. The
resulting method is called gradient descent.

The step size rv, may be chosen so as to minimize the £2 norm of
the residual r,. But there are other options too.
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Conjugate Gradients (for SPD matrices)

Our problem Ax = b is equivalent to the problem of finding a
vector x that minimizes

o(x) = %xTAx ~b'x.

The Conjugate Gradient Method defines search directions that are

—_——

A-conjugate, and minimizes ||ex||a = \'I.-"'eEAek. Mote that this is
well defined only if A is SPD.

Remark: SPD matrices = Symmetric Positive Definite matrices

69/
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A (first) look at the Conjugate Gradient (CG) algorithm

Given an initial guess xg and a tolerance tol, set at first
ro =b — Axg, dg = (rg.ra), bs = (b.b), k = 0 and pg = ro. Then:

While 8¢ = tal® b,

Sk
s

X1
L |

I5llr+1

Pit1

Api

Ok
':pk'. Sk}
Xp + Py
Fi — LS

i
Pk Tegn)
Opt1

Ok

Fei1 + Px

k+ 1L
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Numerical convergence behaviour: stationary or
nonstationary methods
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A link between the Conjugate Gradient method and
Krylov subspace methods

» Y. Saad, Krylov Subspace Methods for Solving Large
Unsymmetric Linear Systems, Mathematics of
Computation 37, 105-126 (1981).

» The purpose of the paper of Y. Saad (1981) is to
generalize the conjugate gradient method regarded as a
projection process onto the Krylov subspace .

» We shall say of a method realizing such a process that it
belongs to the class of Krylov subspace methods.

» Indeed, it will be seen that these Krylov subspace methods
can be efficient for solving large nonsymmetric systems.
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Krylov Subspace Methods in a first glance

We are seeking to find a solution within the Krylov subspace

Xk € Xo + KK(A; ro) = xo + span{rg, Aro, A%ro, ..., A o).

e Find a good basis for the space (riddle: ‘good" means
what??): Lanczos or Arnoldi will help here.
e Optimality condition:
o Require that the norm of the residual ||b — Axk||2 is minimal

over the Krylov subspace.
@ Require that the residual is orthogonal to the subspace.

» C. Lanczos, An iteration method for the solution of the
eigenvalue problem of linear differential and integral operators, J.
Res. Nat'l Bur. Std. 45 (1950) 255-282.

» W. E. Arnoldi, The principle of minimized iterations in the
solution of the matrix eigenvalue problem, Quarterly of Applied
Mathematics, 9 (1951) 17-29.
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Well known methods Krylov subspace methods
1) Conjugate Gradient method (CG method)

2) Biconjugate Gradient method (BiCG method)

3) Biconjugate Gradient Stabilized (Bi-CGSTAB method)

4) Minimal Residual (MINRES method)

5) General minimal Residual method (GMRES method)

6) Symmetric LQ method(SYMMLQ method)

7) Conjugate Gradient Squared (CGS method)

8) Quasi-Minimal Residual (QMR method)

9) Conjugate Gradients on the Normal Equations (CGNE and

CGNR methods)

Remark: We will discuss in more details the Krylov methods: CG,
Bi-CGSTAB, MINRES and GMRES.
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Well known methods Krylov subspace methods

1)

Conjugate Gradient method (CG method)

Magnus R. Hestenes and Eduard Stiefel. Methods of Conjugate
Gradients for Solving Linear Systems. Journal of Research of the
National Bureau of Standards, 49(6) (1952) 409-436.

Obs.: The matrix A (Ax = b) is SPD.

Minimal Residual (MINRES method)

Chris Paige Michael Saunders. Solutions of sparse indefinite
systems of linear equations, SIAM J. Numer. Anal 12 (1975)
617—-629.

General minimal Residual method (GMRES method)

Y. Saad and M. H. Schultz. GMRES: A generalized minimal
residual algorithm for solving nonsymmetric linear systems, SIAM
J. Sci. Stat. Comput., 7 (1986) 856—-869.

Biconjugate Gradient Stabilized (Bi-CGSTAB method)

H. A. Van der Vorst. Bi-CGSTAB: A Fast and Smoothly Converging
Variant of Bi-CG for the Solution of Nonsymmetric Linear
Systems. SIAM J. Sci. and Stat. Comput. 13(2) (1992) 631-644.
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Preconditioning
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Preconditioning
Convergence rate typically depends on two factors:
@ Distribution/clustering of eigenvalues (cruciall)
e Condition number (the less important factor!)

Idea: Since A is given and is beyond our control, define a matrix
M such that the above properties are better for M~1A, and solve
M~1Ax = M~1b rather than Ax = b.

Requirements: To produce an effective method the preconditioner
matrix M must be easily invertible. At the same time it is desirable
to have at least one of the following properties hold:

k(M~1A) < k(A), and/or the eigenvalues of M~1A are much
better clustered compared to those of A.

Essential for convergence: position of eigenvalues
(singular values)
Fast convergence for: well conditioned problems or
matrices with clustered spectrum

0
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Preconditioning (Cont.)

@ Algebraic, general purpose (arguably, frequently needed in
continuous optimization)

@ Specific to the problem (arguably, frequently needed in PDEs)

Remark: We will overview steady-state and dynamic models
involving PDEs for a boundary problem and a boundary-initial
boundary problem.
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Preconditioning (Cont.)

Preconditioning is a combination of art and science...

e Stationary preconditioners, such as Jacobi, Gauss-Seidel, SOR.

Incomplete factorizations.

Multigrid and multilevel preconditioners. (Advanced)

Preconditioners tailored to the problem in hand, that rely for
example on the properties of the underlying differential
operators.

Remark: Incomplete Factorizations might also be considered as
follows: Given the matrix A, construct an LU decomposition or a
Cholesky decomposition (if A is symmetric positive definite) that
follows precisely the same steps as the usual decomposition
algorithms, except that a nonzero entry of a factor is generated only if
the matching entry of A is nonzero.
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Some basic concepts of consistency, stability and
convergence of a numerical method
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Topics/prelude

Well-posedness and ill-posedness
Conditioning, stability and sources of error
Forward and backward stability analysis
A priori and a posteriori analysis

Relations between stability and convergence
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More on conditioning, stability and sources of error

Well-posedness and ill-posedness

The concept of a well-posed (correct) problem of mathematical
physics was formulated by the famous French mathematician
Hadamard (1902): Jacques Hadamard (1902). Sur les problémes
aux dérivées partielles et leur signification physique. Princeton
University Bulletin. pp. 49-52.

At the present time this concept is widely presented in textbooks on
the equations of mathematical physics or partial differential equations
(see, e.g., Lawrence C. Evans, PDE book, AMS 1988).

A problem of mathematical physics or a boundary value problem for a
partial differential equation is called well-posed if the following
conditions are satisfied:

1) a solution of the problem exists;
2) the solution of the problem is unique; and

3) the solution of the problem depends continuously on the data of
the problem.
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More on conditioning, stability and sources of error
Well-posedness and ill-posedness

The well-posedness conditions just formulated require refinement.

Namely, both the solution and the data of the problem are
considered as elements of some function space, and the conditions
for a problem to be well-posed are formulated as follows.

[) A solution of the problem exists for all data belonging to some
closed subspace in a normed linear space of the type CX, Lp,
H,_‘;, W,f, etc... and belongs to a space of the same type. The
subspace is most often either the entire space or a part of the
space on which a finite collection of linear functionals vanishes.

[I) The solution of the problem is unique in some analogous space.

[ll) To infinitesimal variations of the data of the problem in the data
space there correspond infinitesimal variations of the solution in
the solution space

Remark: Problems that are not well-posed in the sense of Hadamard
are termed ill-posed.
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More on conditioning, stability and sources of error
Well-posedness and ill-posedness

Having formulated the concept of a well-posed problem, Hadamard
presented an example of an ill-posed problem for a differential
equation which in his opinion did not correspond to any real physical
formulation.

The Cauchy problem for the Laplace equation that is ill-posed (or not
well-posed) in the sense of Hadamard, since the solution does not
continuously depend on the data of the problem. Such ill-posed
problems are not usually satisfactory for physical applications!

Typical examples of well-posed (correct) problems of mathematical
physics include the Dirichlet problem for Laplace’s equation and the
heat equation with specified initial conditions.

For instance, the backwards heat equation, deducing a previous
distribution of temperature from final data, is not well-posed in the
sense of Hadamard, in that the solution is highly sensitive to changes
in the final data, see, e.g., James V. Beck, Ben Blackwell, Charles R.
St. Clair, Jr, Inverse heat conduction: ill-posed problems, NY: John
Wiley (1985) — see BAE library.



More on conditioning, stability and sources of error

Well-posedness and ill-posedness

Continuum models (differential or not) must often be discretized in
order to obtain a numerical solution (e.g., in the form Ax = b). While
solutions may be continuous with respect to the initial conditions, they
may suffer from numerical instability when solved with finite precision.

Even if a problem is well-posed, it may still be ill-conditioned,
meaning that a small error in the initial data can result in much larger
errors in the answers. If the problem is well-posed, then it stands a
good chance of solution on a computer using a stable algorithm.

An ill-conditioned problem is indicated by a large condition number.

If it is not well-posed, it needs to be re-formulated for numerical
treatment. Typically this involves including additional assumptions,
such as smoothness of solution. This process is known as
regularization.

Tikhonov regularization is one of the most commonly used for
regularization of linear ill-posed problems. (But this is not the subject
of this course.)

85

1



Now, consider the words of Baxter and Iserles in B.J.C. Baxter &
A. Iserles. “On the foundations of computational mathematics”, in
Handbook of Numerical Analysis XI (PG. Ciarlet & F. Cucker, eds),
North-Holland, Amsterdam (2003), 3-34.

“It is a sobering thought that, even when a computational solution to a
mathematical problem has been found, often following great
intellectual and computational effort, its merit might be devalued by
poor stability of the underlying algorithm.”

“This state of affairs is sometimes designated as stability or well
posedness or conditioning — purists may argue ad nauseam over the
precise definitions of these concepts, but it is clear that, one way or
the other, they play an instrumental role in computational
mathematics.”

“Another dichotomy, extant in both computational analysis and
computational algebra, is between traditional forward stability
analysis and the approach of backward error analysis (a misnomer:
in reality it refers to backward stability or conditioning analysis) with
respect to the numerical method under consideration.”
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More on conditioning, stability and sources of error

We shall find the terms well posed and stable being used in an
interchanging manner. In general, the concept of well-posedness is
linked to the original continuum (differential) model and the concept of
stability it closely related to conditioning of the underlying model.

For example, a linear system Ax = b of n equations in n unknowns
with a nonsingular coefficient matrix A has exactly one solution. Even
so, if Ais nearly singular then a small perturbation of A can produce a
large change in the solution, although not arbitrarily large: the
condition number ||A|| ||A~"|| bounds the relative change.

Caution: Indeed, it is not appropriate to pretend the numerical
method can cure the pathologies of an intrinsically ill-posed problem.

Good references on this subject for more details and rigorous proofs
of these facts (all available in our bibimecc):

[1] K. Atkinson. Theoretical numerical analysis: a functional analysis framework, 3rd ed (2010).

E] Gene H. Golub and Charles F. Van Loan. Matrix computations, 3rd ed., Baltimore, MD; London: Johns
opkins University Press (1996).

[3] V. A. Morozov ; translation editor Z. Nashed, translated by A. B. Aries. Methods for solving incorrectly
posed problems. Springe (1984).
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More on conditioning, stability and sources of error

Consider the following problem: find x such that
F(x,d)=0 (1.1)

where d is the set of data which the solution depends on and F' is the
functional relation between = and d. According to the kind of problem
that is represented in (1.1), the variables x and d may be real numbers,
vectors or functions. Typically, (1.1) is called a direct problem it F' and d
are given and x is the unknown, inverse problem if F' and x are known
and d is the unknown, identification problem when x and d are given while
the functional relation F'is the unknown.

Problem (1.1) is well posed if it admits a unique solution & which depends
with continuity on the data.

A problem which does not enjoy the property above is called ill posed or
unstable.

Example A simple instance of an ill-posed problem is finding the number
of real roots of a polynomial. For example, the polynomial p(z) = 2* — 2%(2a —
1) + a(a — 1) exhibits a discontinuous variation of the number of real roots as a
continmously varies in the real field. We have, indeed, 4 real roots if a = 1, 2 if

a € [0, 1) while no real roots exist if a < 0.
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More on conditioning, stability and sources of error

Well-posedness and Condition Number of a Problem

Continuous dependence on the data means that small perturbations on
the data d yield “small” changes in the solution x. Precisely, denoting by éd
an admissible perturbation on the data and by éa the consequent change
in the solution, in such a way that

F(z + 8x,d+ 6d) =0, (1.2)
then
V>0, 3K (n,d): ||6d]| <n = ||bz| < K(n,d)||éd]. (1.3)

The norms used for the data and for the solution may not coincide, when-
ever d and z represent variables of different kinds.

With the aim of making this analysis more quantitative. we introduce the
following definition.
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More on conditioning, stability and sources of error

Well-conditioned and ill-conditioned depends on the context of the
problem

Definition 1.1 For problem (1.1) we define the relative condition number
to be

K(d) = sup LI”/”T” (1.4)

saep [|6dll/l|d]”
where D is a neighborhood of the origin and denotes the set of admissible
perturbations on the data for which the perturbed problem (2.2) still makes
sense. Whenever d = 0 or x = 0, it is necessary to introduce the absolute
condition number, given by

(1.5)

. (]
Kaps(d) = ;:jlé% lod|

Problem (1.1) is called ill-conditioned if K(d) is “big” for any admissible
datum d (the precise meaning of “small” and “big” is going to change
depending on the considered problem).
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More on conditioning, stability and sources of error

Well-posedness and lll-posed problems

The property of a problem of being well-conditioned is independent of
the numerical method that is being used to solve it. In fact, it is possible
to generate stable as well as unstable numerical schemes for solving well-
conditioned problems. The concept of stability for an algorithm or for a
numerical method is analogous to that used for problem (1.1) and will be
made precise in the next section.

Remark (Tll-posed problems) Even in the case in which the condi-
tion number does not exist (formally, it is infinite), it is not necessarily true
that the problem is ill-posed. In fact there exist well posed problems (for
instance, the search of multiple roots of algebraic equations, see next Ex.)
that for which the condition number is infinite, but such that they can be
reformulated in equivalent problems (that is, having the same solutions)
with a finite condition number.
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More on conditioning, stability and sources of error

Well-conditioned and ill-conditioned depends on the context of the problem
If problem (1.1) admits a unigue solution, then there necessarily exists a
mapping G, that we call resolvent, between the sets of the data and of the
solutions, such that
r=G(d), thatis F(G(d),d)=0. (1.6)
According to this definition, (1.2) vields = + éx = G(d + 6d). Assuming
that G is differentiable in d and denoting formally by G'(d) its derivative
with respect to d (if G : R" — R™, G'(d) will be the Jacobian matrix of
G evaluated at the vector d), a Taylor's expansion of & truncated at frst
order ensures that
G(d + éd) — G(d) = G'(d)dd + o(]|8d||) for 8d — 0,

where || - || is a suitable norm for éd and o(-) is the classical infinitesimal
symbol denoting an infinitesimal term of higher order with respect to its
argument. Neglecting the infinitesimal of higher order with respect to ||6d]|,
from (1.4) and (1.5) we respectively deduce that

‘ dl Y

K@~ 0@ AN K@) ~ 6@, 1.7
(d) ~ || ()“||G(d)|| bs(d) = [|G'(d) ], (1.7)
the symbol || - || denoting the matrix norm associated with the vector norm

The estimates in (1.7) are of great practical usefulness
in the analysis of problems in the form (1.6). as shown in the forthcoming

examples.
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More on conditioning, stability and sources of error

Well-conditioned and ill-conditioned depends on the context of the problem

Example (Algebraic equations of second degree) The solutions to the
algebraic equation x* — 2pz 4+ 1 = 0, with p > 1, are z+ = p+ /p? — 1. In this
case, F(z,p) = 2% —2pz+1, the datum d is the coefficient p, while z is the vector
of components {xy,z_}. As for the condition number, we notice that (1.6) holds
by taking G : B — B2, G(p) = {xs,z_}. Letting G+(p) = w~, it follows that

L (p) =1+ p/+/p? — 1. Using (1.7) with || - || = || - |2 we get
K(p) ~ ti p> 1. (18)
=1

From (1.8) it turns out that in the case of separated roots (say, if p > /2)
problem F(z,p) = 0 is well conditioned. The behavior dramatically changes in
the case of multiple roots, that is when p = 1. First of all, one notices that the
funetion G4 (p) = p+ /p* — 1 is no longer differentiable for p = 1, which makes
(1.8) meaningless. On the other hand. equation (1.8) shows that, for p close to
1, the problem at hand is ill conditioned. However, the problem is not il posed.

Indeed, it is possible to reformulate it in an equivalent
manner as F(z,t) = 22 — (1 +#?)/t)z + 1 = 0, with £ = p + /p? — 1, whose
roots #- =t and xy = 1/t coinecide for t = 1. The change of parameter thus
removes the singularity that is present in the former representation of the roots
as functions of p. The two roots - = x_ (1) and x4 = x.(t) are now indeed
regular functions of { in the neighborhood of § = 1 and evaluating the condition
number by (1.7) vields K(t) = 1 for any value of t. The transformed problem is

thus well conditioned.
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More on conditioning, stability and sources of error

Well-conditioned and ill-conditioned depends on the context of the problem

Example (Systems of linear equations) Consider the linear system Ax
= b, where x and b are two vectors in R™, while A is the matrix (n x n) of the
real coefficients of the system. Suppose that A is nonsingular; in such a case x
is the unknown solution x, while the data d are the right-hand side b and the
matrix A, that is, d = {b;, ai;, 1 < 4,5 < n}.

Suppose now that we perturb only the right-hand side b. We have d = b,
x = G(b) = A" 'b so that, G'(b) = A™', and (1.7) yields

AT Il _ flAx]]

= ATY < |A] JATY| = K(A), 1.9
[A=Th] ] IATT] < A 1A (A) (1.9)

K(d) ~

where K(A) is the condition number of matrix A (see definition ) and the use
of a consistent matrix norm is understood. Therefore, if A is well conditioned,
solving the linear system Ax=Db is a stable problem with respect to perturbations
of the right-hand side b. Stability with respect to perturbations on the entries of
A will be analyzed in the next pages.
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More on conditioning, stability and sources of error

Well-conditioned and ill-conditioned depends on the context of the problem: example

Example (Nonlinear equations) Let f: B — R be a function of class
C" and consider the nonlinear equation

Flz,d) = f(z) = plz) —d =0,

where » : B — R is a suitable function and d € R a datum (possibly equal
to zero). The problem is well defined only if ¢ is invertible in a neighborhood
of d: in such a case, indeed, # = @~ '(d) and the resolvent is G = ¢~ *. Since
(e~ 1)'(d) = [ip'[;n)]_l, the first relation in (1.7) yields, for d # 0,

]

K(d) =~ ml[&?’(ﬂf)l_ll‘ (1.10)
while if d = 0 or z = 0 we have
Kass(d) = [ ()] 7" (1.11)

The problem is thus ill posed if @ is a multiple root of ¢(x) —d; it is ill conditioned
when '(x) is “small”, well conditioned when '(z) is “large”.
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Stability of Numerical Methods

Consistency, convergence and stability issues

We shall henceforth suppose the problem (1.1) to be well posed. A numer-
ical method for the approximate solution of (1.1) will consist, in general,
of a sequence of approximate problems

Fra{3:71.1 dn.) ={) n = 1 (1[2)
depending on a certain parameter n (to be defined case by case). The
understood expectation is that x,, — x as n — oo, i.e. that the numerical

solution converges to the exact solution. For that, it is necessary that d,, —
d and that F,, “approximates” F', as n — oc.
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Stability of Numerical Methods

Consistency, convergence and stability issues

Consistency

Precisely, if the datum d of problem (1.1) is admissible for F},, we say that

(1.12) is consistent if

F,(x,d) = F,(z,d) — F(x,d) — 0 forn — oc (1.13)
where x is the solution to problem (1.1) corresponding to the datum d.
Remark: (Consistency) The meaning of this definition depends on
the underlying single class of the considered problems at hand (e.g.,

initial value problem for ODEs and initial and boundary value
problems for PDEs).
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Stability of Numerical Methods

Consistency, convergence and stability issues

Strongly consistency (a good dream)

A method is said to be strongly consistent it F,,(x,d) = 0 for any value
of n and not only for n — oc.

In some cases (e.g., when iterative methods are used) problem (1.12)
could take the following form

Foltn, Zpno1,... \Tp_g,dn) =0 n>gq (1.14)

where xg,x1,... ,24-1 are given. In such a case, the property of strong
consistency becomes F, (z,z,... ,x,d) =0 for all n > q.
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Stability of Numerical Methods

Consistency, convergence and stability issues (example)

Example Let us consider the following iterative method (known as New-
ton's method and discussed as in elsewhere) for approximating a simple root o
of a function f: R — R,

f(@n-1)

f(En-1)’
The method (1.15) can be written in the form (1.14) by setting Fy,(x, 20—, f) =
Tn — Tn-1 + f(zn-1)/f (za-1) and is strongly consistent since F, (e, e, f) = 0
for all n > 1.

Consider now the following numerical method (known as the composite mid-
point rule discussed in elsewhere ) for approximating x = f:‘ f(t)dt,

Tn =112f(%), n>1

k=1
where H = (b—a)/nand { =a+ (k—1)H, k=1,...,(n+ 1). This method
is consistent; it is also strongly consistent provided thet f is a piecewise linear

given To, Tn = Tn—1 — n > 1. (1.15)

polynomial.
More generally, all numerical methods obtained from the mathematical prob-
lem by truncation of limit operations (such as integrals, derivatives, series, ...)

are nol strongly consistent.
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Stability, consistency and convergence issues
Well posed (or stable), uniqueness and continuity w.r.t initial datum

Recalling what has been previously stated about problem (1.1), in order
for the numerical method to be well posed (or stable) we require that for any
fixed n, there exists a unique solution x,, corresponding to the datum d,,,
that the computation of x,, as a function of d,, is unique and. furthermore,
that x,, depends continnously on the data, i.e.

W >0, 3K, (n.d,) : ||0d.]| <n = |6z, < K. (n,d,)||8d,]. (1.16)
As done in (1.4), we introduce for each problem in the sequence (1.12) the
quantities

62
AT

M K.ps n(d?l) = Sup

K,(d,) = sup . -
(dn) = S92 Todnll/Tdnl - .

IJ}.d:n. [ Dn
and then define

(1.17)

abs
=00 >k k—oo p>p

K Y = Llim sup K, (dp), K" (d,) = lim sup Kaps.nl(dn).

We call K™ (d,,) the relative asymptotic condition number of the numer-
ical method (1.12) and K[}“™(d,,) absolute asymptotic condition number,

corresponding to the datum d,,.
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Stability, consistency and convergence issues
Relative/absolute asymptotic condition number of the numerical method

The numerical method is said to be well conditioned if K™ is “small”
for any admissible datum d,,, ill conditioned otherwise. As in (1.6), let us
consider the case where, for each n, the functional relation (1.1) defines a
mapping G,, between the sets of the numerical data and the solutions

z, = Gn(d,), thatis F,(Gr(d,).d,) = 0. (1.18)
Assuming that G, is differentiable, we can obtain from (2.17)

”d"n I

Tl Kapen(da) =~ |G (). (1.19
G Kasaldn) = |G )]l (119)

K’H((‘i\ﬂ.) jat ||G:;(dHJ||
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Stability, consistency and convergence issues
Relative/absolute asymptotic condition number of the numerical method

Example (Sum and subtraction) The function f : B> — R, f(a,b) =
@+ b, is a linear mapping whose gradient is the vector f'(a,b) = (1, Y. Using

n 1/p
Ixllp =Y |ei?] . for1<p<oo,
=1
the vector norm || - ||y defined in then yields K(a,b) >~ (|a| + |b])/(|a + b|), from

which it follows that summing two numbers of the same sign is a well conditioned
operation, being K(a,b) ~ 1. On the other hand, subtracting two numbers almost
equal is ill conditioned, since |a + b| < |a| + |b|. This fact, already pointed out in
before then , leads to the cancellation of significant digits whenever numbers can
be represented using only a finite number of digits (as in floating-point arithmetic)
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Stability, consistency and convergence issues
Relative/absolute asymptotic condition number of the numerical method

Example Consider again the problem of computing the roots of a polyno-
mial of second degree analyzed in the above.  When p > 1| (separated roots),
such a problem is well conditioned. However, we generate an unstable algorithm
if we evaluate the root z_ by the formula x— = p — /p? — 1. This formula is
indeed subject to errors due to numerical cancellation of significant digits (see
definition ) that are introduced by the finite arithmetic of the computer. A pos-
sible remedy to this trouble consists of computing x. = p+ /p? — 1 at first,
then x_ = 1/x,. Alternatively, one can solve F(x,p) = 27 — 2px + 1 = 0 using
Newton'’s method

Tn = Tn—1 — (:r?,__] —2pxn—1 +1)/(20n—1 — 2p) = fulp), n>1, xygiven.

Applying (1.19) for p > 1 yields K,.(p) ~ |p|/|zn — p|. To compute K""™(p)
we notice that, in the case when the algorithm converges, the solution x, would
converge to one of the roots x4 or x_; therefore, |z, — p| — /p? — 1 and thus
Ku(p) — K™™(p) =~ |p|/\/p? — 1, in perfect agreement with the value (1.8) of
the condition number of the exact problem.

We can conclude that Newton's method for the search of simple roots of a
second order algebraic equation is ill conditioned if |p| is very close to 1, while it
is well conditioned in the other cases.
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Stability, consistency and convergence issues
Algorithm, numerical approximation and convergence

The final goal of numerical approximation is, of course, to build, through
numerical problems of the type (1.12). solutions x,, that “get closer” to the
solution of problem (1.1) as much as n gets larger. This concept is made
precise in the next definition.

Definition 1.2 The numerical method (1.12) is convergent iff
Ve > 0 3ng(e), I8(np,2) >0

(1.20)
Y > ngle), V||éd,|| < é(np,e) = ||z(d) — x,(d + 6d,,)|| <&,

where d is an admissible datum for the problem (1.1), z(d) is the corre-

sponding solution and x,(d+dd,,) is the solution of the numerical problem
(1.12) with datum d + 6d,,.
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Stability, consistency and convergence issues
Algorithm, numerical approximation and convergence

To verify the implication (1.20) it suffices to check that under the same
assumptions

(1.21)

ba|

lx(d + ddy) — xp(d + 6dy,)|| <

Indeed, thanks to (1.3) we have
|#(d) — zn(d + bdy)|| < ||lz(d) — x(d + édy )|
+ ||-T{{r'E s {ﬁd”) = xﬂ.(d + 5{"':1) H = R—(é(ﬂu‘ 5)- d) ”hdn” -+ E

Choosing éd,, such that K(6(ng,c),d)||éd,| < 5, one obtains (1.20).
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Stability, consistency and convergence issues
Measures of the convergence, matrix or vector quantities

Measures of the convergence of x,, to = are given by the absolute error
or the relative error, respectively defined as

|_1‘? o -Tﬂ|

E(J:n) - |T = Ip

\ Eret(zy) = . (ifz #£0). (1.22)

o
In the cases where r and x,, are matrix or vector quantities, in addition
to the definitions in (1.22) (where the absolute values are substituted by
suitable norms) it is sometimes useful to introduce the error by component
defined as

E; i (x,) = max u)—’—‘ﬂ
i |(I’.‘§_3'|

(1.23)
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Relations between Stability and Convergence
Well posed (stability) + consistency linked to convergent numerical methods

The concepts of stability and convergence are strongly connected.
First of all, if problem (1.1) is well posed, a necessary condition in order
for the numerical problem (1.12) to be convergent is that it is stable.
Let us thus assume that the method is convergent, and prove that it is
stable by finding a bound for [|6x,,||. We have
6z, |l = |len(d+6d,) — 2o (d)|| < ||2n(d) — x(d)]|

4 () — 2(d + 8dy)|| + lla(d + 6dn) — xn(d + 8dy)||  (1.24)

[/

K(6(no.e),d)||é6d, || + &,

having used (1.3) and (1.21) twice. From (1.24) we can conclude that, for n
sufficiently large, ||6a:,|/||6d,|| can be bounded by a constant of the order
of K(6(np,z),d), so that the method is stable. Thus, we are interested in
stable numerical methods since only these can be convergent,
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Relations between Stability and Convergence
Well posed (stability) + consistency linked to convergent numerical methods

The stability of a numerical method becomes a sufficient condition for
the numerical problem (1.12) to converge if this latter is also consistent
with problem (1.1). Indeed, under these assumptions we have

le(d+ 6dy) — zp(d+ 6dy)|| < |le(d+ 6d,) — x(d)]|

+  |lz(d) = zp(d)]| + ||znl(d) — zp(d + 6d,)||.

Thanks to (1.3), the first term at right-hand side can be bounded by [|6d,, ||
(up to a multiplicative constant independent of 6d,,). A similar bound holds
for the third term, due to the stability property (1.16). Finally, concerning
the remaining term, if F), is differentiable with respect to the variable x,
an expansion in a Taylor series gives

Fala(d).d) — Fu(oa(d),d) = 02|y (a(d) — a(d),
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Relations between Stability and Convergence
Well posed (stability) + consistency linked to convergent numerical methods

Fn(.'l’_'(d),d) - n{fn d') d) b ][e d](i d -Erl(d'))e

for a suitable T “between” x(d) and ;tr,,_(d ). Assuming also that dF,, /dx is
invertible, we get

am
x(d) —x,(d) = [ — [Fo(x(d), d) — Fy(z,(d), d)]. (1.25)
du (#.d)

On the other hand, replacing F}, (x,(d), d) with F(x(d), d) (since both terms
are equal to zero) and passing to the norms. we find

(OF,, ) =
ox \(Z.d)

le(d) - 2a(d)]| < | B (e(d), d) — Fla(d), d)].
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Stability, consistency and convergence issues
Well posed (stability) + consistency and convergent numerical methods

On the other hand, replacing F,, (z,,(d), d) with F'(xz(d), d) (since both terms
are equal to zero) and passing to the norms, we find

i -1
o(d) — aa(d)]| < (‘{Fi’) |Fu(a(d),d) — F(a(d),d)]|.
9T} |(z.4)

Thanks to (1.13) we can thus conclude that ||x(d) — 2, (d)|| — 0 for n — oc.
The result that has just been proved, although stated in qualitative terms,
is a milestone in numerical analysis, known as equivalence theorem (or
Lax-Richtmyer theorem): “for a consistent numerical method, stability is
equivalent to convergence”.

A rigorous proof of this theorem is available in Lax-Richtmyer (1956) — see also Dahlquist (1956) — for the case of

linear Cauchy problems and in Richtmyer-Morton (1967) for linear well-posed initial value problems.

P. D. Lax and R. Richtmyer (1956), Survey of the stability of linear finite difference
equations. Communications on Pure and Applied Mathematics 9(2):267-293.

G. Dahlquist (1956) Convergence and Stability in the Numerical Integration of Ordinary
Differential Equations. Math. Scand. 4: 33-53.

R. Richtmyer and K. Morton (1967) Difference Methods for Initial Value Problems. Wiley, New York.
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A priori and a posteriori analysis

Forward and backward stability analysis
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A priori and a posteriori analysis
Forward and backward stability analysis

The stability analysis of a numerical method can be carried out following
different strategies:

L. forward analysis, which provides a bound to the variations |6z, on
the solution due to both perturbations in the data and to errors that
are intrinsic to the numerical method:

2. backward analysis, which aims at estimating the perturbations that
should be “impressed” to the data of a given problem in order to
obtain the results actually computed under the assumption of working
in exact arithmetic. Equivalently, given a certain computed solution
T, backward analysis looks for the perturbations éd,, on the data
such that F,(7,.d, + 6d,) = 0. Notice that, when performing such
an estimate, no account at all is taken into the way 7, has been
obtained (that is, which method has been employed to generate it).
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A priori and a posteriori analysis

Forward and backward stability analysis

The stability analysis of a numerical method can be carried out following
different strategies:

L. forward analysis, which provides a bound to the variations |6z, on
the solution due to both perturbations in the data and to errors that
are intrinsic to the numerical method:

2. backward analysis, which aims at estimating the perturbations that
should be “impressed” to the data of a given problem in order to
obtain the results actually computed under the assumption of working
in exact arithmetic. Equivalently, given a certain computed solution
T, backward analysis looks for the perturbations éd,, on the data
such that F,(7,.d, + 6d,) = 0. Notice that, when performing such
an estimate, no account at all is taken into the way 7, has been
obtained (that is, which method has been employed to generate it).
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A priori and a posteriori analysis

Forward and backward stability analysis: a first example

Forward and backward analyses are two different instances of the so
called a priori analysis. This latter can be applied to investigate not only
the stability of a numerical method, but also its convergence. In this case
it is referred to as a priori error analysis, which can again be performed
using either a forward or a backward technique.

A priori error analysis is distincted from the so called a posteriori error
analysis, which aims at producing an estimate of the error on the grounds
of quantities that are actually computed by a specific numerical method.
Typically, denoting by Z,, the computed numerical solution, approximation
to the solution & of problem (2.1), the a posteriori error analysis aims at
evaluating the error x — 7, as a function of the residual r, = F(Z,,d) by
means of constants that are called stability factors.
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A priori and a posteriori analysis
Forward and backward stability analysis: a second example

Example For the sake of illustration, consider the problem of finding the
Zeros @, ... ,ay of a polynomial p,(z) = Y1 _, agpz® of degree n.

Denoting by pn(z) = > 1_, arz" a perturbed polynomial whose zeros are &,
forward analysis aims at estimating the error between two corresponding zeros
a; and ;. in terms of the variations on the coefficients ay —ag, E=0,1,... . n.

On the other hand, let {é;} be the approximate zeros of p, (computed some-
how). Backward analysis provides an estimate of the perturbations éaj which
should be impressed to the coefficients so that 7} (ax +bax )@l = 0, for a fixed
¢;. The goal of a posteriori error analysis would rather be to provide an estimate
of the error a; — &; as a function of the residual value p,(&;).
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A priori and a posteriori analysis

Forward and backward stability analysis: a second example

Example Consider the linear system Ax=b, where Ac R"*" is a nonsin-
gular matrix.

For the perturbed system A% = b, forward analysis provides an estimate of
the error x — X in terms of A — A and b — b, while backward analysis estimates
the perturbations 6A = (6a;;) and &b = (6b;) which should be impressed to the
entries of A and b in order to get (A +8A)X,, = b+ &b, X, being the solution of
the linear system (computed somehow). Finally, a posteriori error analysis looks
for an estimate of the error x — X,, as a function of the residual r, = b — AX,,.
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A priori and a posteriori analysis

It is important to point out the role played by the a posteriori analysis
in devising strategies for adaptive error control.

These strategies, by suitably changing the discretization parameters
(for instance, the spacing between nodes in the numerical integration
of a function or a differential equation), employ the a posteriori
analysis in order to ensure that the error does not exceed a fixed
tolerance.

A numerical method that makes use of an adaptive error control is
called adaptive numerical method. It is also time consuming to use!

In practice, a method of this kind applies in the computational process
the idea of feedback, by activating on the grounds of a computed
solution a convergence test which ensures the control of error within
a fixed tolerance.

In case the convergence test fails, a suitable strategy for modifying
the discretization parameters is automatically adopted in order to
enhance the accuracy of the solution to be newly computed, and the

overall procedure is iterated until the convergence check is passed.
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LEAST SQUARE PROBLEM

QR Factorization and Singular Value Decomposition (SVD)
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Least Squares Problem

Solution of Least Sauares Problems
@ More robust approach is to use QR factorization A = QR
» b can be projected onto range(A) by P = QQT, and therefore
QRx=QQ"h . 5 o
» Left-multiply by QT and we get Rx = Q7 b (note AT = R_IQT)

Least squares via QR Factorization
Compute reduced QR factorization A = QR
Compute vector ¢ = QT b
Solve upper-triangular system Rx = c for x

e Computation is dominated by QR factorization (2mn?® — 3n?)

@ Question: If Householder QR is used, how to compute QTb?

@ Answer: Compute QT b (where @ is from full QR factorization) and
then take first n entries of resulting Q7 b
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Least Squares Problem

Solution of Least Squares Problems
@ For a QR factorization A = @R computed by Householder

triangularization, the factors Q and R satisfy

QR=A~+38A.  [I6AI/IIAIl = Olemachine):

i.e., exact QR factorization of a slightly perturbed A
e R is R computed by algorithm using floating points

o However, Q is product of exactly orthogonal reflectors
Q=0&...0

where Qy is given by computed ¥, since @ is not formed explicitly
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Backward Stability of Solving Ax = b with QR

Least Squares Problems

Algorithm: Solving Ax = b by QR Factorization

Compute A = QR using Householder, represent Q by reflectors
Compute vector y = Q7 b implicitly using reflectors
Solve upper-triangular system Rx = y for x

o All three steps are backward stable
@ Overall, we can show that

(A+AA)X =b, [AA]/IIAll = Olemachine)

as we prove next
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Proof of Backward Stability

Backward Stability of Solving Ax = b with Householder QR
Proof: Step 2 gives

(Q+46Q)7=b, [16Q] = Oemachine)
Step 3 gives
(R+0R)%=7. [SRI/IIR| = Olemachine)

Therefore,
b=(Q+0Q)(R+R)x = |QR + (0Q)R + Q(6R) + (5Q)(9R)| X

Step 1 gives

b= [A+3A+(6Q)R+ Q(SR) + (4Q)(6R) | X
AA

where QR = A + 6A

122/1



Proof of Backward Stability (Cont.)
Backward Stability of Solving Ax = b with Householder QR

QR = A+ 6A where ||5A||/|| Al = O(¢machine): and therefore
IRl _ »7 A+ 8A]
=@ =0(1
A <191 = oM
Now show that each term in AA is small
||(5Q)§|| IRI _
T < (6Q) | A — O(¢machine)
IQER) _ ISR IR
<Q| 5= 77 = Ole ;
1A] @l IR I ( machlne)
[GQERI [0R]|
_ o
jar = PQUIZT = Ohachine)
Overall,
IAA] _ [16A] | IGQ)RI | 1RWR)  I6Q)(SR)I
< + + + = 0(e :
Al S Al T A Al Al (“machine)

Since the algorithm is backward stable, it is also accurate.
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Stability of Gram-Schmidt Orthogonalization

@ Gram-Schmidt QR is unstable, due to loss of orthogonality
@ Gram-Schmidt can be stabilized using augmented system of equations
@ Compute QR factorization of augmented matrix: [Q,R1]=mgs([A,b])

@ Extract R and Q7 b from RI1: R=R1(1:n,1:n); Qb=R1(1:n,n+1)
@ Back solve: x=R\Qb

Theorem

The solution of the full-rank least squares problem by Gram-Schmidt
orthogonality is backward stable in the sense that the computed solution %
has the property

(A + 8A)% — b)]| = min, % — O

machine)

for some A € R™*", provided that QTb is formed implicitly.
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The method of normal equations

® The method of normal equation solves x = (AT A)"*AT b, due to
squaring of condition number of A

Theorem

The solution of the full-rank least squares problem via normal equation is
unstable. Stability can be achieved, however, by restriction to a class of
problems in which k(A) is uniformly bounded above.

@ Another method is to SVD (coming up next)
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Summary of Algorithms for Least Square problems

@ Householder QR (with/without pivoting, explicit or implicit Q):
Backward stable

@ Classical Gram-Schmidt: Unstable

@ Modified Gram-Schmidt with explicit @: Unstable

e Modified Gram-Schmidt with augmented system of equations with
implicit @: Backward stable

o Normal equations (solve AT Ax = ATb): Very unstable
@ Singular value decomposition: Backward stable
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Singular Value Decomposition (SVD)

The image of unit sphere under any m x n matrix is a hyperellipsoid

Give a unit sphere S in ", let AS denote the shape after
transformation

SVD is

A=uzvT
where U € R™*™ and V € R"*" is orthogonal and ¥ € R™*" is
diagonal
Singular values are diagonal entries of I, correspond to the principal
semiaxes, with entries 01 > 02 = --- = a0, = 0.
Left singular vectors of A are column vectors of U and are oriented in
the directions of the principal semiaxes of AS
Right singular vectors of A are column vectors of V and are the
preimages of the principal semiaxes of AS
Avj=ojuifor 1 <j<n

Some remarks:
AcC™Xn  yecm™n s ccM™n v*gRhxn

P Note that the diagonal matrix ¥ has the same shape as A even when A is not square, but U and V*
are always square unitary matrices.

P The singular values of a matrix A are precisely the lengths of the semi-axes of the hyperellipsoid £
defined by E = {Ax : ||x||o = 1}.
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SVD (Geometric Observation)

v U
B 02_:'
y — <7
M=UZX-V*

The image? shows:

Upper Left: The unit disc with the two canonical unit vectors. It is clear that the image of the unit
sphere in R" under a map A = UZV* must be a hyperellipse in R".

Lower Left: The action of V* on the unit disc. This is just a rotation. The unitary map V*

preserves the sphere.

Lower Right: The action of X V* on the unit disc. Sigma scales in vertically and horizontally. The
diagonal matrix X stretches the sphere into a hyperellipse aligned with the canonical basis.

Upper Right: Unit disc transformed with M and singular Values o4 and o5 indicate. Finally, the latter
unitary map U rotates or reflects the hyperellipse without changing its shape.

2thanks to wikipedia
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Two Different Types of SVD

o Full SVD: U ¢ R™™M ¥ c RM*0 and V < RN ig
A=UzVT

e Reduced SVD: U € R™*", $ € R"*" (assume m > n)
A=UxvT

e Furthermore, notice that

min{m,n}

A= Z aiuv;’
i=1

so we can keep only entries of U and V corresponding to nonzero a;.
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SVD versus Eigenvalue Decomposition

o Eigenvalue decomposition of nondefective matrix A is A = XAX™?

@ Differences between SVD and Eigenvalue Decompaosition

» Not every matrix has eigenvalue decomposition, but every matrix has
singular value decomposition

» Eigenvalues may not always be real numbers, but singular values are
always non-negative real numbers

» Eigenvectors are not always orthogonal to each other (orthogonal for
symmetric matrices), but left (or right) singular vectors are orthogonal
to each other

@ Similarities
» Singular values of A are square roots of eigenvalues of AAT and AT A,
and their eigenvectors are left and right singular vectors, respectively
» Singular values of symmetric matrices are absolute values of
eigenvalues, and eigenvectors are singular vectors
» This relationship can be used to compute singular values by hand
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Existence of SVD (sketch of the proof)

Theorem
(Existence) Every matrix A € R"*" has an SVD. J

Proof: Let o1 = ||Al|2. There exists vi € R” with ||n]|2 = 1 and

[[Avq]|2 = o1. Let Uy and V; be orthogonal matrices whose first columns
are u; = Avy /o1 (or any unit-length vector if o1 = 0) and vy, respectively.
Note that

T o w’
uTav=s=| T “ |. (1)

Furthermore, w = 0 because || S||2 = o1, and

-
o1 w a1 2 T / 71
H{ 0 B } { o } 2201+w “o of—l-wer{ W ]
implying that oy > /02 +wTw and w = 0.

2
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Existence of SVD: Based on 2-norm and prove by induction

We then prove by induction using (1). If m =1 or n =1, then B is empty
and we have A = U;SV,". Otherwise, suppose B = X5V, and then

- 1 0" [oy OF 1 07 T
oo w9 n ]l w W

u }x vT

where U and V are orthogonal.

Existence and Uniqueness (Theorem): Every matrix A € C"*" has
a singular value decomposition A = U~ V*. Furthermore, the singular
values {o;} are uniquely determined, and, if A is square and the o;
are distinct, the left and right singular vectors {u;} and {v;} are
uniquely determined up to complex signs (i.e., complex scalar factors
of absolute value 1). Gene H. Golub and Charles F. Van Loan. Matrix
computations, 3rd ed., Johns Hopkins University Press (1996).

Numerical methods for the SVD are based on the QR (Francis)
iterative algorithms and its variants; Golub & Van Loan(1996).
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BACKGROUND IN VECTORS, MATRICES AND NORMS
ORIENTED TO NUMERICAL LINEAR ALGEBRA

Obs.: For more details on these topics see
list of references at the course syllabus
MS993/MT404
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Matrices

e Multiplication by another matrix:
C = 1’13.

where A € C"*™ B ¢ C™*P (' ¢ C"*P and

m

(.’.,:j = Z a"ik:bﬂ:_jl'-

k=1

Sometimes, a notation with column vectors and row vectors is used. The column
vector a.; is the vector consisting of the j-th column of A,

ay;

a2;
U-*J =

A j

Similarly, the notation a;, will denote the i-th row of the matrix A

Qiy = (“"ﬂfln 250 PR av’.m) .
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Matrices (Cont.)

For example, the following could be written

A= {H::I-.\aa:'L vy f"«ﬂu) )
or
A1
A2y
A i
Dy

The transpose of a matrix A in C"*" is a matrix C' in C™*" whose elements
are defined by ¢;; = aj,i =1,...,m, j=1,...,n. Itis denoted by A”" Itis often
more relevant to use the transpose conjugate matrix denoted by AX and defined by

AM = AT AT,

in which the bar denotes the (element-wise) complex conjugation.

Matrices are strongly related to linear mappings between vector spaces of finite
dimension. This is because they represent these mappings with respect to two given
bases: one for the initial vector space and the other for the image vector space, or
range of A.
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Square Matrices and Eigenvalues

A matrix is square if it has the same number of columns and rows, i.e., if m = n. An
important square matrix is the identity matrix

I = {3ij}i5=1,..n;

where d;; is the Kronecker symbol. The identity matrix satisfies the equality Al =
1A = A for every matrix A of size n. The inverse of a matrix, when it exists, is a
matrix C' such that

CA=AC=1.

The inverse of A is denoted by A~
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Square Matrices and Eigenvalues (Cont.)

The determinant of a matrix may be defined in several ways. For simplicity, the
following recursive definition is used here. The determinant of a 1 x 1 matrix (a) is
defined as the scalar a. Then the determinant of an n x n matrix is given by

mn

det(A) = Z( ~1)*ay det(Ay),

j=1

where Ay is an (n — 1) x (n — 1) matrix obtained by deleting the first row and the
j-th column of A. A matrix is said to be singular when det( A) = 0 and nonsingular
otherwise. We have the following simple properties:

o det(AB) = det(A)det(B).
det(AT) = det(A).

L]

det(ad) = a"det(A).

det(A) = det(A).

det(I) = 1.
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Square Matrices and Eigenvalues (Cont.)

From the above definition of determinants it can be shown by induction that the
function that maps a given complex value A to the value p4(A) = det(A — M)
is a polynomial of degree n; see Exercise 8. This is known as the characteristic
polynomial of the matrix A.

Definition 1.1 A complex scalar A is called an eigenvalue of the square matrix A
if @ nonzero vector u of C" exists such that Au = A\u. The vector u is called an
eigenvector of A associated with X. The set of all the eigenvalues of A is called the
spectrum of A and is denoted by o (A).

A scalar A is an eigenvalue of A if and only if det(A — AT) = pa(A) = 0. That
is true if and only if (iff thereafter) A is a root of the characteristic polynomial. In
particular, there are at most n distinct eigenvalues.

It is clear that a matrix is singular if and only if it admits zero as an eigenvalue.
A well known result in linear algebra is stated in the following proposition.
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Square Matrices and Eigenvalues (Cont.)

Proposition 1.2 A matrix A is nonsingular if and only if it admits an inverse.

Thus, the determinant of a matrix determines whether or not the matrix admits an
inverse.

The maximum modulus of the eigenvalues is called spectral radius and is de-
noted by p(A)

1 = i A B
p(A) o Al

The trace of a matrix is equal to the sum of all its diagonal elements

tr(A) = i:a.,;f.
i=1

It can be easily shown that the trace of A is also equal to the sum of the eigenvalues
of A counted with their multiplicities as roots of the characteristic polynomial.

139/1



Square Matrices and Eigenvalues (Cont.)

Proposition 1.3 If \ is an eigenvalue of A, then X is an eigenvalue of A, An
eigenvector v of A associated with the eigenvalue X is called a left eigenvector of
A

When a distinction is necessary, an eigenvector of A is often called a right eigen-
vector. Therefore, the eigenvalue A as well as the right and left eigenvectors, u and
v, satisfy the relations

Au=u, vA= o,

or, equivalently, - )
w AT = ', Ay = Jo.
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Types of Matrices

The choice of a method for solving linear systems will often depend on the structure
of the matrix A. One of the most important properties of matrices is symmetry, be-
cause of its impact on the eigenstructure of A. A number of other classes of matrices
also have particular eigenstructures. The most important ones are listed below:

o Symmetric matrices: AT = A.

e Hermitian matrices: A% = A.

o Skew-symmetric matrices: AT = —A.

e Skew-Hermitian matrices: A" = — A,

e Normal matrices: A"A = AAM,

e Nonnegative matrices: a;; = 0, i,j = 1,...,n (similar definition for non-

positive, positive, and negative matrices).
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Types of Matrices (Cont.)

e Unitary matrices: Q7Q = I.

It is worth noting that a unitary matrix ¢ is a matrix whose inverse is its transpose
conjugate Q*, since

Q'Q=1 — Q'=Q". (1.1)
A matrix Q such that Q" () is diagonal is often called orthogonal,

Some matrices have particular structures that are often convenient for computa-
tional purposes. The following list, though incomplete, gives an idea of these special
matrices which play an important role in numerical analysis and scientific computing
applications.

e Diagonal matrices: a;; = 0 for j # 1. Notation:

A= L'li‘rlg (“11, A2y ey a?m) i
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Types of Matrices (Cont.)

e Upper triangular matrices: a;; = 0 fori > j.

o Lower triangular matrices: a;; = 0 for 1 < j.

e Upper bidiagonal matrices: a;; = 0forj #iorj #i+ 1.

e Lower bidiagonal matrices: a;; = 0for j #iorj#i— 1.

o Tridiagonal matrices: a;; = 0 for any pair ¢, j such that |j — i| > 1. Notation:
A = tridiag (a1, @i a441) -

o Banded matrices: a;; # O only if i —my < j < i+, where m; and m,, are
two nonnegative integers. The number 1y + m,, + 1 is called the bandwidth
of A,

o Upper Hessenberg matrices: a;; = 0 for any pair 4, j such that i > j + 1.
Lower Hessenberg matrices can be defined similarly.
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Types of Matrices (Cont.)

e Outer product matrices: A = uv™, where both 1 and v are vectors.

e Permutation matrices: the columns of A are a permutation of the columns of
the identity matrix.

e Block diagonal matrices: generalizes the diagonal matrix by replacing each
diagonal entry by a matrix. Notation:
A= di'd-g (A”. Ag-z. ey A?mJ i
e Block tridiagonal matrices: generalizes the tridiagonal matrix by replacing
each nonzero entry by a square matrix. Notation:
A = tridiag (,‘L"-,'... 1 Ay Aiir1) -
The above properties emphasize structure. i.e., positions of the nonzero elements
with respect to the zeros. Also, they assume that there are many zero elements or

that the matrix is of low rank. This is in contrast with the classifications listed earlier,
such as symmetry or normality.
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Vector Inner Products and Norms

An inner product on a (complex) vector space X is any mapping s from X x X into
C,
reX,yeX — s(ny €C,

which satisfies the following conditions:

1. s(x,y) is linear with respect to x, i.e.,

s(Arzy + Aoz, y) = Mis(xr.y) + Aes(zo.y). Vi, zo € VAL A €C.

2. s(x,y) is Hermitian, i.e.,

sly,x) = s(x,y), Y,y € X

3. s(x,y) is positive definite, i.e.,

s(z,x) > 0, Yo # 0.

145/1



Vector Inner Products and Norms (Cont.)

Note that (2) implies that s(x, x) is real and therefore, (3) adds the constraint that
s(x. r) must also be positive for any nonzero x. For any & and y,

s(x,0) = s, 0.y) = 0.8(z,y) = 0.

Similarly, s(0.y) = 0 for any y. Hence, s(0,y) = s(«,0) = 0 for any = and y. In
particular the condition (3) can be rewritten as

s(z,2) >0 and s(z,2)=0 iff ==0,

as can be readily shown. A useful relation satisfied by any inner product is the so-
called Cauchy-Schwartz inequality:

Is(z, )| < s(x,x) s(y.y). (1.2)
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Vector Inner Products and Norms (Cont.)

In the particular case of the vector space X = C", a “canonical” inner product
is the Euclidean inner product. The Euclidean inner product of two vectors @ =
(zi)iz1..nand y = (yi)i=1..n of C" is defined by

n
(2,y) = >z, (13)
i=1
which is often rewritten in matrix notation as

(x,y) = yHa. (1.4)

It is easy to verify that this mapping does indeed satisfy the three conditions required
for inner products, listed above. A fundamental property of the Euclidean inner
product in matrix computations is the simple relation

(Az,y) = (z, A%y), VYaz,yeC" (1.5)
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Vector Inner Products and Norms (Cont.)

The proof of this is straightforward. The adjoint of A with respect to an arbitrary
inner product is a matrix B such that (Ax,y) = (&, By) for all pairs of vectors
and y. A matrix is self-adjoint, or Hermitian with respect to this inner product, if it
is equal to its adjoint. The following proposition is a consequence of the equality

(1.5).

Proposition 1.4 Unitary matrices preserve the Euclidean inner product, i.e.,
(Qz,Qy) = (. y)

Sfor any unitary matrix () and any vectors x and y.

Proaof. Indeed, (Qx, Qy) = (z,Q"Qy) = (=, y). ]
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Vector Inner Products and Norms (Cont.)

A vector norm on a vector space X is a real-valued function z — ||| on X,
which satisfies the following three conditions:

L ||z 20, ¥z € X, and |z||=0iffz=0.
2. ||lez|| = |a|||zl], VYzeX, VaeC.
3. lle+yll < llofl + llyll, VayeX

For the particular case when X = C", we can associate with the inner product
(1.3) the Euclidean norm of a complex vector defined by

|z]|2 = (x, :1:}”2,

It follows from Proposition 1.4 that a unitary matrix preserves the Euclidean norm
metric, i.e..

Q|2 = llzl2, ¥ .
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Matrix Norms

The linear transformation associated with a unitary matrix () is therefore an isometry.
The most commonly used vector norms in numerical linear algebra are special
cases of the Holder norms

i 1/p
Izl = (Z |~’5?3].'“) : (1.6)
i=1

Note that the limit of |||, when p tends to infinity exists and is equal to the maxi-
mum modulus of the z;’s. This defines a norm denoted by ||.||o. The cases p = 1,
p = 2, and p = oo lead to the most important norms in practice,

||:;.'||] = |;'I:|[ + |.‘L"2| + 04 |:1:,,_|,
‘ ]l,.'”)

|zll2 = [|z1[ + 22> + -+ - + |zaf?

The Cauchy-Schwartz inequality of (1.2) becomes
(2, )| < [lzll2llyll2-
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Matrix Norms (Cont.)

For a general matrix A in C™*", we define the following special set of norms

Ax
|Allpg = _max 142y
zeCm, 20 ||z|q

(1.7)

The norm ||, is induced by the two norms ||. ||, and |.||;. These norms satisty the
usual properties of norms, i.e.,

|A =0, VA eC™, and ||A|=0 iff A=0 (1.8

laAl = |a|||A],Y A € C™™ YaeC (1.9)
|A+B| < ||lA| + 1B, VAB ec™m (1.10)
(1.11)

A norm which satisfies the above three properties is nothing but a vector norm ap-
plied to the matrix considered as a vector consisting of the m columns stacked into a
vector of size nm.
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Matrix Norms (Cont.)

The most important cases are again those associated with p.q = 1,2, 00. The
case ¢ = p is of particular interest and the associated norm ||.||,,, is simply denoted
by ||.||,, and called a “p-norm.” A fundamental property of a p-norm is that

| ABll, < [|Allp||Bllp:
an immediate consequence of the definition (1.7). Matrix norms that satisfy the above
property are sometimes called consistent. Often a norm satisfying the properties

(1.8~1.10) and which is consistent is called a matrix norm. A result of consistency is
that for any square matrix A,
k k
1A%, < [IA]l5-

In particular the matrix A* converges to zero if any of its p-norms is less than 1.
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Matrix Norms - The Frobenius norm of a matrix

The Frobenius norm of a matrix is defined by

1/2
moon

IAlle= D03 lasl? ] . (1.12)

j=1 i=1

This can be viewed as the 2-norm of the column (or row) vector in c" consisting
of all the columns (respectively rows) of A listed from 1 to m (respectively 1 to n.)
It can be shown that this norm is also consistent, in spite of the fact that it is not
induced by a pair of vector norms, i.e., it is not derived from a formula of the form
(1.7); However, it does not satisfy some of the other properties of
the p-norms. For example, the Frobenius norm of the identity matrix is not equal to
one. To avoid these difficulties, we will only use the term matrix norm for a norm
that is induced by two norms as in the definition (1.7). Thus, we will not consider
the Frobenius norm to be a proper matrix norm, according to our conventions, even
though it is consistent.
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Matrix Norms (Cont.)

The following equalities satisfied by the matrix norms defined above lead to al-
ternative definitions that are often easier to work with:

IAllL = max > lasls (1.13)
i e )

|A]|oe = iznllaxnz |aijl, (1.14)
..... o

IAll2 = [p(A" 4)]"* = [p(aaH)]"?, (1.15)

Allr = [te(A% )] = [tr(a4H)] 2, (1.16)

As will be shown later, the eigenvalues of A A are nonnegative. Their square
roots are called singular values of A and are denoted by ;.7 = 1,...,m. Thus, the
relation (1.15) states that || A|» is equal to o, the largest singular value of A.
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Matrix Norms (Cont.)

Example 1.1. From the relation (1.15), it is clear that the spectral radius p(A) is
equal to the 2-norm of a matrix when the matrix is Hermitian. However, it is not
a matrix norm in general. For example, the first property of norms is not satisfied,

since for 0 i
4= (0 0) :

we have p(A) = 0 while A # 0. Also, the triangle inequality is not satisfied for the
pair A, and B = A" where A is defined above. Indeed,

p(A+B)=1 while p(A)+ p(B)=0.
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Subspaces, Range, and Kernel

A subspace of C" is a subset of C" that is also a complex vector space. The set of
all linear combinations of a set of vectors G = {aj,as,...,a,} of C" is a vector
subspace called the linear span of (7,

span{G} = span{ai,as, ... a4}
q
{z eC"|z= Zmaf: {aiti=1..0 € {C"’} .
i=1

If the a;’s are linearly independent, then each vector of span{G} admits a unique
expression as a linear combination of the a;’s. The set (7 is then called a basis of the
subspace span{G}.

Given two vector subspaces S and Ss, their sum S is a subspace defined as the
set of all vectors that are equal to the sum of a vector of 5y and a vector of S5. The
intersection of two subspaces is also a subspace. If the intersection of S and S5 is
reduced to {0}, then the sum of S} and Sy is called their direct sum and is denoted
by § = S; @ S2. When S is equal to C", then every vector x of C™ can be written
in a unique way as the sum of an element x; of Sy and an element x» of S5. The
transformation P that maps @ into @ is a linear transformation that is idempotent,
i.e., such that P? = P. It is called a projector onto S| along Ss.
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Subspaces, Range, and Kernel (Cont.)

Two important subspaces that are associated with a matrix A of C"*™ are its
range, defined by
Ran(A) = {Az |z € C™}, (1.17)

and its kernel or null space
Null(Ad) ={xeC" | Az =0}

The range of A is clearly equal to the linear span of its columns. The rank of a
matrix is equal to the dimension of the range of A, i.e., to the number of linearly
independent columns. This column rank is equal to the row rank, the number of
linearly independent rows of A. A matrix in C"*™ is of full rank when its rank is
equal to the smallest of m and n. A fundamental result of linear algebra is stated by
the following relation

C" = Ran(A) @ Null(47) . (1.18)

The same result applied to the transpose of A yields: € = Ran(AT) @ Null(4).
A subspace S is said to be invariant under a (square) matrix A whenever AS C

S. In particular for any eigenvalue A of A the subspace Null(A4 — AI) is invariant

under A. The subspace Null(A — AJ) is called the eigenspace associated with A and

consists of all the eigenvectors of A associated with ), in addition to the zero-vector.
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Orthogonal Vectors and Subspaces

A set of vectors G = {ay,az,....a,} is said to be orthogonal if
(ai,a;) =0 when i j.

It is orthonormal if, in addition, every vector of G has a 2-norm equal to unity. A
vector that is orthogonal to all the vectors of a subspace S is said to be orthogonal to
this subspace. The set of all the vectors that are orthogonal to S is a vector subspace
called the orthogonal complement of S and denoted by S+. The space C" is the
direct sum of S and its orthogonal complement. Thus, any vector = can be written in
a unique fashion as the sum of a vector in S and a vector in S, The operator which
maps x into its component in the subspace S is the orthogonal projector onto S.
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Orthogonal Vectors and Subspaces (Cont.)

The Gram-Schmidt process

A set of vectors G = {ay,az,....a,} is said to be orthogonal if
(ai,a;) =0 when i j.

It is orthonormal if, in addition, every vector of G has a 2-norm equal to unity. A
vector that is orthogonal to all the vectors of a subspace S is said to be orthogonal to
this subspace. The set of all the vectors that are orthogonal to S is a vector subspace
called the orthogonal complement of S and denoted by S+. The space C" is the
direct sum of S and its orthogonal complement. Thus, any vector = can be written in
a unique fashion as the sum of a vector in S and a vector in S, The operator which
maps x into its component in the subspace S is the orthogonal projector onto S.
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Orthogonal Vectors and Subspaces (Cont.)

The Gram-Schmidt process

ALGORITHM 1.1 Gram-Schmidt

1. Compute ryy := ||x1]|2. Ifryy = 0 Stop, else compute gy := x1/rq1.
2, Forg =2, ., wDo:
3 Compute rij = (xj,q;) ,fori=1,2,....5—1
i1

4. Gi= 25 = 2 it
5. rij = ldllz,
6. Ifrj; = 0 then Stop, else ¢; = ¢/rj;
7 EndDo

It is easy to prove that the above algorithm will not break down, i.e., all r steps
will be completed if and only if the set of vectors x;. x2. ..., x, is linearly indepen-

dent. From lines 4 and 35, it is clear that at every step of the algorithm the following
relation holds:

J
T = E Tijgi-
g=1
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Orthogonal Vectors and Subspaces (Cont.)

The Modified Gram-Schmidt process

If X = [z1,22,...,2:], @ = [q1,92....,4:], and if R denotes the r x r upper
triangular matrix whose nonzero elements are the r;; defined in the algorithm, then
the above relation can be written as

X =QR. (1.19)

This is called the QR decomposition of the n x r matrix X. From what was said
above, the QR decomposition of a matrix exists whenever the column vectors of X
form a linearly independent set of vectors.

The above algorithm is the standard Gram-Schmidt process. There are alterna-
tive formulations of the algorithm which have better numerical properties. The best
known of these is the Modified Gram-Schmidt (MGS) algorithm.
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Orthogonal Vectors and Subspaces (Cont.)

The Modified Gram-Schmidt process

ALGORITHM 1.2 Modified Gram-Schmidt

L. Define ryy := ||x1|[2. If r11 = 0 Stop, else q1 := x1/r11.
2. Forj =2, ..y r Do

3 Define G = x;

4. Fori=1,.:.,5—71, Do

5. rij = (4, q)

6. G :=q—rijg

7. EndDo

8. Compute rj; = ||q]|2.

9, Ifrj; = 0 then Stop, else q; == G/r};
10 EndDo

162/1



Orthogonal Vectors and Subspaces (Cont.)
The Householder reflectors algorithm

Yet another alternative for orthogonalizing a sequence of vectors is the House-
holder algorithm. This technique uses Householder reflectors, i.e., matrices of the
form

P=1-2uww’, (1.20)

in which w is a vector of 2-norm unity. Geometrically, the vector Px represents a
mirror image of o with respect to the hyperplane span{w}*.

To describe the Householder orthogonalization process, the problem can be for-
mulated as that of finding a QR factorization of a given n x m matrix X. For any
vector x, the vector w for the Householder transformation (1.20) is selected in such
a way that

Pr = oeq,

where « is a scalar. Writing (I — 2ww” )z = ae; yields
i e ;
2wrr w =1 — aeq. (1.21)
This shows that the desired w is a multiple of the vector & — avey,
T — e

W=t————
Iz — aexll2
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Orthogonal Vectors and Subspaces (Cont.)

The Householder reflectors algorithm

For (1.21) to be satisfied, we must impose the condition

2

2

2z — ae) Tz = || — aey

which gives 2(||z[|} — a&;) = ||z]3 — 20 + o2, where & = el r is the first
component of the vector 2. Therefore, it is necessary that

a = £ as.
In order to avoid that the resulting vector w be small, it is customary to take
a = —sign(€) ||z,
which yields

x + sign(&1) ||zl|2e1

W= i
| + sign(&1)]|z]

: (1.22)
2

201
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Orthogonal Vectors and Subspaces (Cont.)

The Householder reflectors algorithm

Given an i x m matrix, its first column can be transformed to a multiple of the
column e, by premultiplying it by a Householder matrix /,

X1 = PJX._ le‘l]_ = (¥€j.

Assume, inductively, that the matrix X has been transformed in k — 1 successive
steps into the partially upper triangular form

Ty Tiz Tygo e e e Ty
Top Tz o cee cec T
T3z - fot L Tam
-Xk — Pk:—l wa .P].X_[ —
LLk
Th+lk 0 Th4+1lm
Tk i Enm
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Orthogonal Vectors and Subspaces (Cont.)
The Householder reflectors algorithm

This matrix is upper triangular up to column number k& — 1. To advance by one
step, it must be transformed into one which is upper triangular up the k-th column,
leaving the previous columns in the same form. To leave the first & — 1 columns

unchanged, select a w vector which has zeros in positions 1 through £ — 1. So the
next Householder reflector matrix is defined as

P.=1T- Q-H%U:E._ (1.23)

in which the vector wy, is defined as

we = ——, (1.24)
where the components of the vector z are given by
0 if i<k
=4 B+ay if i=k (1.25)
Tik if i>k

with )
1/2

3 = sign(xgy) (z r?,\) : (1.26)
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Orthogonal Vectors and Subspaces (Cont.)
The Householder reflectors algorithm

We note in passing that the premultiplication of a matrix X by a Householder
transform requires only a rank-one update since,

(I —2ww™)X = X —wo” where v=2X"Tw.

Therefore, the Householder matrices need not, and should not, be explicitly formed.
In addition, the vectors w need not be explicitly scaled.

Assume now that m — 1 Householder transforms have been applied to a certain
matrix X of dimension n x m, to reduce it into the upper triangular form,

iy Tz Tz o Lim
a2 ey v Lom
&3z e L3
X = PPt PiX = ' ; . “2?)
Tn,m
0

167/1



Orthogonal Vectors and Subspaces (Cont.)
The Householder reflectors algorithm

Recall that our initial goal was to obtain a QR factorization of X. We now wish to
recover the () and R matrices from the Pp.’s and the above matrix. If we denote by
P the product of the I; on the lefi-side of (1.27), then (1.27) becomes

I
PX_(O)’ (1.28)

in which R is an m x m upper triangular matrix, and O is an (n — m) x m zero
block. Since P is unitary, its inverse is equal to its transpose and, as a result,

(R R
X = P! (o) =PPs...Pry (())

If £, is the matrix of size n » m which consists of the first rn columns of the identity
matrix, then the above equality translates into

X =PTE,R.
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Orthogonal Vectors and Subspaces (Cont.)

The Householder reflectors algorithm

The matrix Q = PT E,,, represents the n first columns of PT. Since
Q!Q ™ E;':zl PP‘I!-Em =1,

(2 and R are the matrices sought. In summary,

X =QR,
in which R is the triangular matrix obtained from the Householder reduction of X
(see (1.27) and (1.28)) and

Qej = PPy ... Pyqe;.
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Orthogonal Vectors and Subspaces (Cont.)
The Householder reflectors algorithm

ALGORITHM 1.3 Householder Orthogonalization

1 Define X = [z1,..., 2]

2 Fork=1,...,m Do:

3 Ifk > 1 compute ry, = P 1Pi_s... Pixy
4. Compute wy, using (1.24), (1.25). (1.26)

5 Compute ry, := Pyry, with P = 1 — 2'Lcrktuf
6 Compute q;. = P1Ps. .. Prep

7 EndDo

Note that line 6 can be omitted since the g; are not needed in the execution of the
next steps. It must be executed only when the matrix ( is needed at the completion of
the algorithm. Also, the operation in line 5 consists only of zeroing the components
k—+1,..., n and updating the k-th component of ry.. In practice, a work vector can
be used for r;. and its nonzero components after this step can be saved into an upper
triangular matrix. Since the components 1 through k of the vector wy, are zero, the
upper triangular matrix K can be saved in those zero locations which would otherwise
be unused.
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Canonical Forms of Matrices

This section discusses the reduction of square matrices into matrices that have sim-
pler forms, such as diagonal, bidiagonal, or triangular. Reduction means a transfor-
mation that preserves the eigenvalues of a matrix.

Definition 1.5 Two matrices A and B are said to be similar if there is a nonsingular
matrix X such that

A=XBX.
The mapping B — A is called a similarity transformation.
It is clear that similarity is an equivalence relation. Similarity transformations pre-
serve the eigenvalues of matrices. An eigenvector up of B is transformed into the
eigenvector uy = Xup of A. In effect, a similarity transformation amounts to rep-

resenting the matrix B in a different basis.
We now introduce some terminology.

1. An eigenvalue A of A has algebraic multiplicity p, if it is a root of multiplicity
 of the characteristic polynomial.

2. If an eigenvalue is of algebraic multiplicity one, it is said to be simple. A
nonsimple eigenvalue is multiple.
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Canonical Forms of Matrices

3. The geometric multiplicity ~ of an eigenvalue A of A is the maximum number
of independent eigenvectors associated with it. In other words, the geometric
multiplicity ~ is the dimension of the eigenspace Null (4 — AT).

4. A matrix is derogatory if the geometric multiplicity of at least one of its eigen-
values is larger than one.

5. Aneigenvalue is semisimple if its algebraic multiplicity is equal to its geomet-
ric multiplicity. An eigenvalue that is not semisimple is called defective.

Often, A1, Aa,.... A, (p < n) are used to denote the distinet eigenvalues of
A. Tt is easy to show that the characteristic polynomials of two similar matrices are
identical; see Exercise 9. Therefore, the eigenvalues of two similar matrices are equal
and so are their algebraic multiplicities. Moreover, if v is an eigenvector of B, then
X is an eigenvector of A and, conversely, if y is an eigenvector of A then X ~!y is
an eigenvector of I5. As a result the number of independent eigenvectors associated
with a given eigenvalue is the same for two similar matrices, i.e., their geometric
multiplicity is also the same.
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Linear Independence of Eigenvectors
Most matrices have an ample supply of eigenvectors

Theorem Let A € C"" let Ay, ..., A bedistinct eigenvalues of A, andlet vy, . . ., U
be eigenvectors associated with Ay, ..., Ay, respectively. Then vy, ..., v are linearly in-
dependent.

Corollary If A € C""" has n distinct eigenvalues, then A has a set of n linearly
independent eigenvectors vy, ..., v,. In other words, there is a basis of C" consisting of
eigenvectors of A.

Amatrix A € C"™" that has n linearly independent eigenvectors is called semisimple.
A synonym for semisimple is diagonalizable.
Corollary states that every matrix that has distinct eigenvalues is semisimple. The converse
is false; a matrix can have repeated eigenvalues and still be semisimple. A good example
is the matrix 7, which has the eigenvalue 1, repeated n times. Since every nonzero vector
is an eigenvector of 7, any basis of C" is a set of n linearly independent eigenvectors of /.
Thus [ is semisimple. Another good example is the matrix 0.

A matrix that is not semisimple is called defective. An example is

0 1
a=[01]
which is upper triangular and has the eigenvalues 0 and 0. The eigenspace associated with

0 is one-dimensional, so A does not have two linearly independent eigenvectors. 17571



REDUCTION TO THE DIAGONAL FORM

DIAGONALIZABLE MATRICES
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Reduction to the Diagonal Form

Diagonalizable matrices

The simplest form in which a matrix can be reduced is undoubtedly the diagonal
form. Unfortunately, this reduction is not always possible. A matrix that can be
reduced to the diagonal form is called diagonalizable. The following theorem char-
acterizes such matrices.

Theorem 1.6 A matrix of dimension n is diagonalizable if and only if it has n line-
arly independent eigenvectors.

Proof. A matrix A is diagonalizable if and only if there exists a nonsingular matrix
X and a diagonal matrix D such that A = X DX !, or equivalently AX = XD,
where D is a diagonal matrix. This is equivalent to saying that n linearly independent
vectors exist — the n column-vectors of X — such that Ar; = «d;2;. Each of these
column-vectors is an eigenvector of A. a
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Reduction to the Diagonal Form

Diagonalizable matrices

A matrix that is diagonalizable has only semisimple eigenvalues. Conversely, if all
the eigenvalues of a matrix A are semisimple, then A has n eigenvectors. It can be
easily shown that these eigenvectors are linearly independent.

We have the following proposition.

Proposition 1.7 A matrix is diagonalizable if and only if all its eigenvalues are
semisimple.

Since every simple eigenvalue is semisimple, an immediate corollary of the above
result is: When A has n distinct eigenvalues, then it is diagonalizable.

Remark: What are the eigenvectors of the 2 x 2 zero matrix ?
The eigenvectors are clearly [1 0]" and [0 1]" (and any
multiple of these). The particular2 x 2 zero matrix is
considered for simplicity.
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The Jordan Canonical Form

From the theoretical viewpoint, one of the most important canonical forms of ma-
trices is the well known Jordan form. A full development of the steps leading to
the Jordan form is beyond the scope of this book. Only the main theorem is stated.
Details, including the proof, can be found in standard books of linear algebra.

In the following, m; refers to the algebraic multiplicity of the individual
eigenvalue \; and [; is the index of the eigenvalue, i.e., the smallest integer for which
Null(A — N5+ = Null(A — A\ 1)4.

Theorem 1.8 Any matrix A can be reduced to a block diagonal matrix consisting
of p diagonal blocks, each associated with a distinct eigenvalue X\;. Each of these
diagonal blocks has itself a block diagonal structure consisting of ~; sub-blocks,
where y; Is the geometric multiplicity of the eigenvalue A;. Each of the sub-blocks,
referred to as a Jordan block, is an upper bidiagonal matrix of size not exceeding
l; < my, with the constant \; on the diagonal and the constant one on the super
diagonal.

Remark: For more details on this topic, see e.g., [1] Paul R.
Halmos, Finite-Dimensional Vector Spaces, Springer Verlag, New
York, 1958. or [2] Kenneth Hoffman and Ray Kunze. Linear algebra,
2nd ed, Englewood Cliffs, NJ, Prentice-Hall (1971).
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The Jordan Canonical Form (Cont.)

The i-th diagonal block, i = 1,....p. is known as the i-th Jordan submatrix (some-
times “Jordan Box™). The Jordan submatrix number i starts in column j; = my +
Mo + -+ + mi—1 + 1. Thus,

Ji
Jo

XAX = J = K :

A

where each J; is associated with A; and is of size m; the algebraic multiplicity of A;.
It has itself the following structure,
'}gl fxﬁ 1
= : with J,';,- = K
" PR
J—iaﬁ ’\a&
Each of the blocks J;;. corresponds to a different eigenvector associated with the
eigenvalue A;. Its size [; is the index of A;.
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The Schur Canonical Form

Here, it will be shown that any matrix is unitarily similar to an upper triangular
matrix. The only result needed to prove the following theorem is that any vector of
2-norm one can be completed by n — 1 additional vectors to form an orthonormal
basis of C™.

Theorem 1.9 For any square matrix A, there exists a unitary matrix () such that
Q"AQ=R

is upper triangular.

Remark: Not all matrices are diagonalizable, but we can transform

any square matrix into triangular form by means of a unitary (or
orthogonal) similarity. This is the consequence of the Schur theorem.
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The Schur Canonical Form

Theorem 1.9 For any square matrix A, there exists a unitary matrix () such that
v 5q :
QUAQ =R

is upper triangular.

Some Remarks on Schur canonical form

1) Notice that the Schur form is not unique, because the eigenvalues
may appear on the diagonal of R in any order.

2) This introduces complex numbers even when A is real. When A is
real, we prefer a canonical form that uses only real numbers,
because it will be cheaper to compute.

3) This means that we will have to sacrifice a triangular canonical
form and settle for a block-triangular canonical form.
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The Schur Canonical Form (proof)

Proof. The proof is by induction over the dimension n. The result is trivial for
n = 1. Assume that it is true for n — 1 and consider any matrix A of size n. The
matrix admits at least one eigenvector u that is associated with an eigenvalue A. Also
assume without loss of generality that |ulj» = 1. First, complete the vector u into
an orthonormal set, i.e., find an n x (n — 1) matrix V' such that the n x n matrix
U = [u, V] is unitary. Then AU = [Au, AV] and hence,

H H
PHoapr | U ) A utAV
URAU = {VH} [Au, AV] = (U VHAV)

Now use the induction hypothesis for the (n — 1) x (n — 1) matrix B = V7 AV:
There exists an (n — 1) x (n — 1) unitary matrix ¢}; such that Q‘VBQ; = R is
upper triangular. Define the n x n matrix

- 1 0
= ( 0 0 )
and multiply both members of (1.29) by Q{f from the left and (:?1 from the right. The

resulting matrix is clearly upper triangular and this shows that the result is true for
A, with @) = ;U which is a unitary n x n matrix. a

(1.29)
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The Schur Canonical Form (proof)
How people actually find it ? (Francis 1961, Kublanovskaja
1962), See book David S. Watkins (3ed,2010)

1) First, notice that this proof is not constructive as we assume
the knowledge of an eigenpair (\, u)

2) It bears noting that in practice, people do not use repeated
Gram-Schmidt to find this Schur decomposition!

3) Schur decomposition of a given matrix is known to be
numerically computed by QR algorithm or its variants.

4) In other words, the roots of the characteristic polynomial
corresponding to the matrix are not necessarily computed
ahead in order to obtain its Schur decomposition.

5) Conversely, QR algorithm can be used to compute the roots
of any given characteristic polynomial by finding the Schur
decomposition of its companion matrix.

6) We conclude by pointing out that the Schur (and the
quasi-Schur) form of a given matrix are in no way unique!
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LEAST SQUARE PROBLEM

QR Factorization and Singular Value Decomposition (SVD)
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Least Squares Problem

Solution of Least Sauares Problems
@ More robust approach is to use QR factorization A = QR
» b can be projected onto range(A) by P = QQT, and therefore
QRx=QQ"h . 5 o
» Left-multiply by QT and we get Rx = Q7 b (note AT = R_IQT)

Least squares via QR Factorization
Compute reduced QR factorization A = QR
Compute vector ¢ = QT b
Solve upper-triangular system Rx = c for x

e Computation is dominated by QR factorization (2mn?® — 3n?)

@ Question: If Householder QR is used, how to compute QTb?

@ Answer: Compute QT b (where @ is from full QR factorization) and
then take first n entries of resulting Q7 b
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Least Squares Problem

Solution of Least Squares Problems
@ For a QR factorization A = @R computed by Householder

triangularization, the factors Q and R satisfy

QR=A~+38A.  [I6AI/IIAIl = Olemachine):

i.e., exact QR factorization of a slightly perturbed A
e R is R computed by algorithm using floating points

o However, Q is product of exactly orthogonal reflectors
Q=0&...0

where Qy is given by computed ¥, since @ is not formed explicitly
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Backward Stability of Solving Ax = b with QR

Least Squares Problems

Algorithm: Solving Ax = b by QR Factorization

Compute A = QR using Householder, represent Q by reflectors
Compute vector y = Q7 b implicitly using reflectors
Solve upper-triangular system Rx = y for x

o All three steps are backward stable
@ Overall, we can show that

(A+AA)X =b, [AA]/IIAll = Olemachine)

as we prove next
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Proof of Backward Stability

Backward Stability of Solving Ax = b with Householder QR
Proof: Step 2 gives

(Q+46Q)7=b, [16Q] = Oemachine)
Step 3 gives
(R+0R)%=7. [SRI/IIR| = Olemachine)

Therefore,
b=(Q+0Q)(R+R)x = |QR + (0Q)R + Q(6R) + (5Q)(9R)| X

Step 1 gives

b= [A+3A+(6Q)R+ Q(SR) + (4Q)(6R) | X
AA

where QR = A + 6A
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Proof of Backward Stability (Cont.)
Backward Stability of Solving Ax = b with Householder QR

QR = A+ 6A where ||5A||/|| Al = O(¢machine): and therefore
IRl _ »7 A+ 8A]
=@ =0(1
A <191 = oM
Now show that each term in AA is small
||(5Q)§|| IRI _
T < (6Q) | A — O(¢machine)
IQER) _ ISR IR
<Q| 5= 77 = Ole ;
1A] @l IR I ( machlne)
[GQERI [0R]|
_ o
jar = PQUIZT = Ohachine)
Overall,
IAA] _ [16A] | IGQ)RI | 1RWR)  I6Q)(SR)I
< + + + = 0(e :
Al S Al T A Al Al (“machine)

Since the algorithm is backward stable, it is also accurate.
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Stability of Gram-Schmidt Orthogonalization

@ Gram-Schmidt QR is unstable, due to loss of orthogonality
@ Gram-Schmidt can be stabilized using augmented system of equations
@ Compute QR factorization of augmented matrix: [Q,R1]=mgs([A,b])

@ Extract R and Q7 b from RI1: R=R1(1:n,1:n); Qb=R1(1:n,n+1)
@ Back solve: x=R\Qb

Theorem

The solution of the full-rank least squares problem by Gram-Schmidt
orthogonality is backward stable in the sense that the computed solution %
has the property

(A + 8A)% — b)]| = min, % — O

machine)

for some A € R™*", provided that QTb is formed implicitly.
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The method of normal equations

® The method of normal equation solves x = (AT A)"*AT b, due to
squaring of condition number of A

Theorem

The solution of the full-rank least squares problem via normal equation is
unstable. Stability can be achieved, however, by restriction to a class of
problems in which k(A) is uniformly bounded above.

@ Another method is to SVD (coming up next)
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Summary of Algorithms for Least Square problems

@ Householder QR (with/without pivoting, explicit or implicit Q):
Backward stable

@ Classical Gram-Schmidt: Unstable

@ Modified Gram-Schmidt with explicit @: Unstable

e Modified Gram-Schmidt with augmented system of equations with
implicit @: Backward stable

o Normal equations (solve AT Ax = ATb): Very unstable
@ Singular value decomposition: Backward stable
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Singular Value Decomposition (SVD)

The image of unit sphere under any m x n matrix is a hyperellipsoid

Give a unit sphere S in ", let AS denote the shape after
transformation

SVD is

A=uzvT
where U € R™*™ and V € R"*" is orthogonal and ¥ € R™*" is
diagonal
Singular values are diagonal entries of I, correspond to the principal
semiaxes, with entries 01 > 02 = --- = a0, = 0.
Left singular vectors of A are column vectors of U and are oriented in
the directions of the principal semiaxes of AS
Right singular vectors of A are column vectors of V and are the
preimages of the principal semiaxes of AS
Avj=ojuifor 1 <j<n

Some remarks:
AcC™Xn  yecm™n s ccM™n v*gRhxn

P Note that the diagonal matrix ¥ has the same shape as A even when A is not square, but U and V*
are always square unitary matrices.

P The singular values of a matrix A are precisely the lengths of the semi-axes of the hyperellipsoid £
defined by E = {Ax : ||x||o = 1}.
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SVD? (Geometric Observation)

v U

B

M=U-2-¥*

The image shows:
Upper Left: The unit disc with the two canonical unit vectors.
Upper Right: Unit disc transformed with M and singular Values o4 and o indicated
Lower Left: The action of V* on the unit disc. This is just a rotation.

Lower Right: The action of £ V* on the unit disc. Sigma scales in vertically and horizontally.

3thanks to wikipedia (image)
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Two Different Types of SVD

o Full SVD: U ¢ R™™M ¥ c RM*0 and V < RN ig
A=UzVT

e Reduced SVD: U € R™*", $ € R"*" (assume m > n)
A=UxvT

e Furthermore, notice that

min{m,n}

A= Z aiuv;’
i=1

so we can keep only entries of U and V corresponding to nonzero a;.
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SVD versus Eigenvalue Decomposition

o Eigenvalue decomposition of nondefective matrix A is A = XAX™?

@ Differences between SVD and Eigenvalue Decompaosition

» Not every matrix has eigenvalue decomposition, but every matrix has
singular value decomposition

» Eigenvalues may not always be real numbers, but singular values are
always non-negative real numbers

» Eigenvectors are not always orthogonal to each other (orthogonal for
symmetric matrices), but left (or right) singular vectors are orthogonal
to each other

@ Similarities
» Singular values of A are square roots of eigenvalues of AAT and AT A,
and their eigenvectors are left and right singular vectors, respectively
» Singular values of symmetric matrices are absolute values of
eigenvalues, and eigenvectors are singular vectors
» This relationship can be used to compute singular values by hand
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Existence of SVD (sketch of the proof)

Theorem
(Existence) Every matrix A € R"*" has an SVD. J

Proof: Let o1 = ||Al|2. There exists vi € R” with ||n]|2 = 1 and

[[Avq]|2 = o1. Let Uy and V; be orthogonal matrices whose first columns
are u; = Avy /o1 (or any unit-length vector if o1 = 0) and vy, respectively.
Note that

T o w’
uTav=s=| T “ |. (1)

Furthermore, w = 0 because || S||2 = o1, and

-
o1 w a1 2 T / 71
H{ 0 B } { o } 2201+w “o of—l-wer{ W ]
implying that oy > /02 +wTw and w = 0.

2
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Existence of SVD (Cont.)

We then prove by induction using (1). If m =1 or n =1, then B is empty
and we have A = U15V17. Otherwise, suppose B = UQZZV:ZT, and then

- 1 0" [oy OF 1 07 T
=0l w0 nllow |

— —

u }x vT

where U and V are orthogonal.

Existence and Uniqueness (Theorem): Every matrix A € C"*" has
a singular value decomposition A = UX V*. Furthermore, the singular
values {o;} are uniquely determined, and, if A is square and the o;
are distinct, the left and right singular vectors {u;} and {v;} are
uniquely determined up to complex signs (i.e., complex scalar factors
of absolute value 1). See detilas ain Gene H. Golub and Charles
F. Van Loan. Matrix computations, 3rd ed., Johns Hopkins
University Press (1996).
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Some results of linear algebra behind the iterative methods
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Some results of linear algebra behind the iterative
methods

In what follows we will briefly highlight some results that are
important in the study of convergence of iterative methods.

The interested reader is referred to the below list of references
for further information linked to the subject of numerical linear
algebra as well as detailed proofs.
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Powers of Matrices

Theorem 1.10 The sequence A*, k = 0,1,..., converges to zero if and only if
plA) < 1.

Proof. To prove the necessary condition, assume that A* — 0 and consider u; a

unit eigenvector associated with an eigenvalue A; of maximum modulus. We have
ARy, = /\!f-ul,

which implies, by taking the 2-norms of both sides,

IAF| = |A*wll2 — 0.

This shows that p(A) = |A\;| < 1.
The Jordan canonical form must be used to show the sufficient condition. As-
sume that p(A) < 1. Start with the equality

AR =X X
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Powers of Matrices

To prove that A* converges to zero, it is sufficient to show that J* converges to
zero. An important observation is that .J* preserves its block form. Therefore, it is
sufficient to prove that each of the Jordan blocks converges to zero. Each block is of
the form

J; = )\-gf. + E{
where F; is a nilpotent matrix of index /;, i.e., E:' = (. Therefore, for k = [;,

1i—1

ke E : k—j 7

F=0
Using the triangle inequality for any norm and taking & = {; yields
i—1

: L
IIJﬁ"II_Z Il B

|
r[] )

Since |\;| < 1. each of the terms in this finite sum converges to zero as k — oc.
Therefore, the matrix .J¥ converges to zero. |

An equally important result is stated in the following theorem.
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Powers of Matrices

Theorem 1.11 The series

S

f=0
converges if and only if p(A) < 1. Under this condition, I — A is nonsingular and
the limit of the series is equal to (I — A)~1.

Proof. The first part of the theorem is an immediate consequence of Theorem 1.10,
Indeed, if the series converges, then | A¥|| — 0. By the previous theorem, this
implies that p(A4) < 1. To show that the converse is also true, use the equality

[ (T =AY At A%, A%
and exploit the fact that since p(A) < 1, then I — A is nonsingular, and therefore,
(F—A)Y I AP = P4 A4 A 44 A,

This shows that the series converges since the left-hand side will converge to (I —
A)~'. In addition, it also shows the second part of the theorem. O
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Powers of Matrices - Jordan canonical form

Another important consequence of the Jordan canonical form is a result that re-
lates the spectral radius of a matrix to its matrix norm.

Theorem 1.12 For any matrix norm ||.||, we have

lim [|A%||YF = p(A).
ki—sn0

Proof. The proof is a direct application of the Jordan canonical form,
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Normal and Hermitian Matrices
Normal matrices

Proof. The proof is by induction over the dimension n. The result is trivial for
n = 1. Assume that it is true for n — 1 and consider any matrix A of size n. The
matrix admits at least one eigenvector u that is associated with an eigenvalue A. Also
assume without loss of generality that |ulj» = 1. First, complete the vector u into
an orthonormal set, i.e., find an n x (n — 1) matrix V' such that the n x n matrix
U = [u, V] is unitary. Then AU = [Au, AV] and hence,

A oufAV )

(1.29)

H
rH r t 2 i
U™ AU = {VH} [Au, AV] = (U VH AV

Now use the induction hypothesis for the (n — 1) x (n — 1) matrix B = V7 AV:
There exists an (n — 1) x (n — 1) unitary matrix ¢}; such that Q‘VBQ; = R is
upper triangular. Define the n x n matrix

- 1 0
= ( 0 0 )
and multiply both members of (1.29) by Q{f from the left and (:?1 from the right. The

resulting matrix is clearly upper triangular and this shows that the result is true for
A, with @) = ;U which is a unitary n x n matrix. a
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Normal and Hermitian Matrices

Normal Matrices

This section examines specific properties of normal matrices and Hermitian matrices,
including some optimality properties related to their spectra. The most common
normal matrices that arise in practice are Hermitian or skew-Hermitian.

1.9.1 Normal Matrices

By definition, a matrix is said to be normal if it commutes with its transpose conju-
gate, i.e., if it satisfies the relation

AH A = AAH, (1.30)

An immediate property of normal matrices is stated in the following lemma.
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Normal and Hermitian Matrices

Normal Matrices
Lemma 1.13 If a normal matrix is triangular, then it is a diagonal matrix.

Proof. Assume, for example, that A is upper triangular and normal. Compare the
first diagonal element of the left-hand side matrix of (1.30) with the corresponding
element of the matrix on the right-hand side. We obtain that

mn
lan|? =) lay;l?,
i=1

which shows that the elements of the first row are zeros except for the diagonal one.
The same argument can now be used for the second row, the third row, and so on to
the last row, to show that a;; = 0 for i # j. O

A consequence of this lemma is the following important result.
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Normal and Hermitian Matrices

Normal Matrices

Theorem 1.14 A matrix is normal if and only if it is unitarily similar to a diagonal
marrix.

Proof. Tt is straightforward to verify that a matrix which is unitarily similar to a
diagonal matrix is normal. We now prove that any normal matrix A is unitarily
similar to a diagonal matrix. Let A = QRQ' be the Schur canonical form of A
where () is unitary and R is upper triangular. By the normality of A,

QR"Q"QRQ" = QRQ"QR"Q"

or.

QR”RQ” _ QRR“Q“-

Upon multiplication by Q'7 on the left and @ on the right, this leads to the equality
RTR = RRY which means that R is normal, and according to the previous lemma
this is only possible if R is diagonal. O

207 /1



Normal and Hermitian Matrices

Normal Matrices

Thus, any normal matrix is diagonalizable and admits an orthonormal basis of eigen-
vectors, namely, the column vectors of Q.

The following result will be used in a later chapter. The question that is asked
is: Assuming that any eigenvector of a matrix A is also an eigenvector of A is A
normal? If A had a full set of eigenvectors, then the result is true and easy to prove,
Indeed, if V' is the n x n matrix of common eigenvectors, then AV = VD and
AHY =V Dy, with Dy and Dy diagonal. Then, AATV = VDD, and AHAV =
V Dy Dy and, therefore, AA" = AH A_ It turns out that the result is true in general,
i.e., independently of the number of eigenvectors that A admits.
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Normal and Hermitian Matrices

Normal Matrices
Lemma 1.15 A marrix A is normal if and only if each of its eigenvectors is also an
eigenvector of A,

Proof. 1t A is normal, then its left and right eigenvectors are identical, so the suffi-
cient condition is trivial. Assume now that a matrix A is such that each of its eigen-
vectors v;, i = 1,..., &k, with & < n is an eigenvector of A For each eigenvector v;
of A, Av; = \v;, and since o; is also an eigenvector of A7 then A" v; = pv;. Ob-
serve that (A7 vy, v;) = p(vi, v;) and because (A% v;, v;) = (vi, Av;) = Ni(v, v;), it
follows that ;2 = );. Next, it is proved by contradiction that there are no elementary
divisors. Assume that the contrary is true for A;. Then, the first principal vector u;
associated with A; is defined by

(A= N = v
Taking the inner product of the above relation with v;, we obtain
(Aws, vi) = Ailug, vi) + (v, vi). (1.31)
On the other hand, it is also true that

(Aui, v) = (ug, ATv) = (g, Aivi) = N, vy). (1.32)0, 4



Normal and Hermitian Matrices Normal Matrices

Clearly, Hermitian matrices are a particular case of normal matrices. Since a
normal matrix satisfies the relation A = QDQ", with D diagonal and @ unitary, the
eigenvalues of A are the diagonal entries of D). Therefore, if these entries are real it
is clear that A = A. This is restated in the following corollary.

Corollary 1.16 A normal matrix whose eigenvalues are real is Hermitian.

As will be seen shortly, the converse is also true, i.e., a Hermitian matrix has real

eigenvalues.
An eigenvalue A of any matrix satisfies the relation
_ (Au,u)
- (w,u) ’
where wu is an associated eigenvector. Generally, one might consider the complex
scalars 5
€T,
(x) = —, 1.33
) @.2) (1.33)

defined for any nonzero vector in C". These ratios are known as Rayleigh quotients
and are important both for theoretical and practical purposes. The set of all possible
Rayleigh quotients as & runs over C" is called the field of values of A. This set is
clearly bounded since each |p(x)| is bounded by the the 2-norm of A, i.e., |u(z)| <
|| Al|2 for all x.
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Normal and Hermitian Matrices

Normal Matrices
If a matrix is normal, then any vector 2 in C" can be expressed as

n
> &ai

where the vectors ¢; form an orthogonal basis of eigenvectors, and the expression for
jt{x) becomes

(Az,z)  Yp_y Ml&l? -
x) = = : o = 3. Mg, (1.34)
MO =G T T ll ? o
where :
- &P 4
0< 3 = <1, and 8 =1,
<bi=golls <1 S 4

i=1
From a well known characterization of convex hulls established by Hausdorff (Haus-
dorff’s convex hull theorem), this means that the set of all possible Rayleigh quo-
tients as @ runs over all of C" is equal to the convex hull of the A;’s. This leads to
the following theorem which is stated without proof.
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Normal and Hermitian Matrices

Normal Matrices

Theorem 1.17 The field of values of a normal matrix is equal to the convex hull of
its spectrun.

The next question is whether or not this is also true for nonnormal matrices and
the answer is no: The convex hull of the eigenvalues and the field of values of a
nonnormal matrix are different in general. As a generic example, one can take any
nonsymmetric real matrix which has real eigenvalues only. In this case, the convex
hull of the spectrum is a real interval but its field of values will contain imaginary
values. See Exercise 12 for another example. It has been shown (Hausdorft) that
the field of values of a matrix is a convex set. Since the eigenvalues are members
of the field of values, their convex hull is contained in the field of values. This is
summarized in the following proposition.

Proposition 1.18 The field of values of an arbitrary matrix is a convex set which
contains the convex hull of its spectrum. It is equal to the convex hull of the spectrum
when the matrix is normal.
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Normal and Hermitian Matrices

Normal Matrices

Theorem 1.17 The field of values of a normal matrix is equal to the convex hull of
its spectrun.

The next question is whether or not this is also true for nonnormal matrices and
the answer is no: The convex hull of the eigenvalues and the field of values of a
nonnormal matrix are different in general. As a generic example, one can take any
nonsymmetric real matrix which has real eigenvalues only. In this case, the convex
hull of the spectrum is a real interval but its field of values will contain imaginary
values. See Exercise 12 for another example. It has been shown (Hausdorft) that
the field of values of a matrix is a convex set. Since the eigenvalues are members
of the field of values, their convex hull is contained in the field of values. This is
summarized in the following proposition.

Proposition 1.18 The field of values of an arbitrary matrix is a convex set which
contains the convex hull of its spectrum. It is equal to the convex hull of the spectrum
when the matrix is normal.
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Normal and Hermitian Matrices

Normal Matrices

A useful definition based on field of values is that of the numerical radius. The
numerical radius v(A) of an arbitrary matrix A is the radius of the smallest disk
containing the field of values, i.e.,

v(A) = max |u(x)|.

T eCn

It is easy to see that

p(4) < v(A) < ||All2 -
The spectral radius and numerical radius are identical for normal matrices. It can
also be easily shown (see Exercise 21) that v(A) > ||A||2/2, which means that

AL

2

The numerical radius is a vector norm, i.e., it satisfies (1.8-1.10), but it is not consis-
tent. However, it satisfies the power inequality (See HORN AND JOHNSON, 1985):

v(AF) < v(A)k. (1.36)

< v(A4) < || Ala. (1.35)
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Normal and Hermitian Matrices

Hermitian Matrices

A first result on Hermitian matrices is the following.
Theorem 1.19 The eigenvalues of a Hermitian matrix are real, i.e., a(A) C R,
Proof. Let X be an eigenvalue of A and u an associated eigenvector of 2-norm unity.

Then
A= (Au,u) = (u, Au) = (Au,u) = X;

which is the stated result. O

Remark: If, in addition, the matrix is real, then the eigenvectors can
be chosen to be real. Since a Hermitian matrix is normal in the
above, the following result is a consequence of Theorem 1.14.
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Normal and Hermitian Matrices

Hermitian Matrices

Theorem 1.20 Any Hermitian matrix is unitarily similar to a real diagonal matrix.

In particular a Hermitian matrix admits a set of orthonormal eigenvectors that form
a basis of C".

In the proof of Theorem 1.17 we used the fact that the inner products (Au, u) are
real. Generally, it is clear that any Hermitian matrix is such that (Ax, x) is real for
any vector # € C™. It turns out that the converse is also true, i.e., it can be shown that
if (Az, z) is real for all vectors = in C", then the matrix A is Hermitian.

Eigenvalues of Hermitian matrices can be characterized by optimality properties
of the Rayleigh quotients (1.33). The best known of these is the min-max principle.
We now label all the eigenvalues of A in descending order:

Al Z A =z A

Here, the eigenvalues are not necessarily distinct and they are repeated, each accord-
ing to its multiplicity. In the following theorem, known as the Min-Max Theorem, S
represents a generic subspace of C™.
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Normal and Hermitian Matrices Hermitian Matrices

Theorem 1.21 The eigenvalues of a Hermitian matrix A are characterized by the
relation

Ap = min max M (1.37)

s dim (S)=n—k+1 zESa#0 (z,2)

Proof. Let {q; };—1...., be an orthonormal basis of C" consisting of eigenvectors of A
associated with )\1 ..... A, respectively. Let Sj, be the subspace spanned by the first &
of these vectors and denote by y:(S) the maximum of (Ax, x)/(x. x) over all nonzero
vectors of a subspace S. Since the dimension of S}, is £, a well known theorem of

linear algebra shows that its intersection with any subspace S of dimension n — k+ 1
is not reduced to {0}, i.e., there is vector  in S Sk. For this & = 3% | &q;. we

have )
Az, x L Ail&
L), i '52| = N SOHEEEES) S A
@2) ~ T &l
Consider, on the other hand, the particular subspace Sy of dimension n — & + 1
which is spanned by ¢y, ... . g,. For each vector x in this subspace, we have

Az, x e Ail&l?
(Az, z) _ ZI__H;._ |§L < M
(& ) Z;=5-|Ei|

so that 1(Sy) < Ak, In other words, as S runs over all the (n — & + 1)-dimensional

subspaces, ;(5) is always > A, and there is at least one subspace S; for which
#0S0) < A This shows the desired result. O+



Normal and Hermitian Matrices Hermitian Matrices

The above result is often called the Courant-Fisher min-max principle or theorem.
As a particular case, the largest eigenvalue of A satisfies

A; = max (A, w),
r#0 (2, 2)

(1.38)

Actually, there are four different ways of rewriting the above characterization,
The second formulation is

: (Ax, x)
Ak = max min
5. dim (§)=k xS x#0 (;I?. J,‘)

(1.39)

and the two other ones can be obtained from (1.37) and (1.39) by simply relabeling
the eigenvalues increasingly instead of decreasingly. Thus, with our labeling of the
eigenvalues in descending order, (1.39) tells us that the smallest eigenvalue satisfies

p— (A.;-;,-Jr).
a0 (T, )

(1.40)

with A;, replaced by A, if the eigenvalues are relabeled increasingly.
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Normal and Hermitian Matrices Hermitian Matrices

In order for all the eigenvalues of a Hermitian matrix to be positive, it is necessary
and sufficient that
(Az,z) >0, YzelC", x#0.

Such a matrix is called positive definite. A matrix which satisfies ( Az, x) > 0 forany
x is said to be positive semidefinite. In particular, the matrix A A is semipositive
definite for any rectangular matrix, since

(AH Az, z) = (Az,Az) > 0, Ya.

Similarly, AA™ is also a Hermitian semipositive definite matrix. The square roots
of the eigenvalues of A7 A for a general rectangular matrix A are called the singular
values of A and are denoted by «;. This is now an obvious fact, because

212 i A H g & .
A ;:max |4zl _ T (Az, A7) _ : 7(‘4 Az, 7) = le
x#0

22 ~ W0 (wax) | w0 (z,3)

which results from (1.38).
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Normal and Hermitian Matrices Hermitian Matrices

Another characterization of eigenvalues, known as the Courant characterization,
is stated in the next theorem. In contrast with the min-max theorem, this property is
recursive in nature.

Theorem 1.22 The eigenvalue X; and the corresponding eigenvector q; of a Hermi-
tian matrix are such that

Aqy, .z
N Agq) _ - (Az2)
(g1, 1) reCr a0 (x,x)
and for k > 1,
A = Adkoar) o (Az,z) dan
(ak: qx) s40qfl o= =qfl_jz=0 (2, 7)

In other words, the maximum of the Rayleigh quotient over a subspace that is
orthogonal to the first k& — 1 eigenvectors is equal to A, and is achieved for the
eigenvector g associated with Ag. The proof follows easily from the expansion
(1.34) of the Rayleigh quotient.
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Nonnegative Matrices, M-Matrices

Nonnegative matrices play a crucial role in the theory of matrices. They are impor-
tant in the study of convergence of iterative methods and arise in many applications
including economics, queuing theory, and chemical engineering.

A nonnegative matrix is simply a matrix whose entries are nonnegative. More
generally, a partial order relation can be defined on the set of matrices.

Definition 1.23 Let A and I be two n x m matrices. Then
A<B

if by definition, a;; < b;j for 1 <i < n, 1 < j < m. If O denotes the n x m zero
matrix, then A is nonnegative if A = O, and positive if A > O. Similar definitions
hold in which “positive” is replaced by “negative”.

The binary relation “<" imposes only a partial order on R"*"™ since two arbitrary
matrices in B" ™™ are not necessarily comparable by this relation. For the remain-
der of this section, we now assume that only square matrices are involved. The next
proposition lists a number of rather trivial properties regarding the partial order rela-
tion just defined.
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Nonnegative Matrices, M-Matrices

Proposition 1.24 The following properties hold.

1. The relation < for matrices is reflexive (A < A), antisymmetric (if A < B and
B < A, then A = B), and transitive (if A < Band B < C, then A < C).

2. If A and B are nonnegative, then so is their product AB and their sum A+ B.
3. If A is nonnegative, then so is A"
4. If A< B, then AT < BT,

5 IfO < A< B, then 1 < || Bl|1 and similarly | A< < ||B||x-

Al

Remark: For a proof of the itens in the Proposition 1.24 see Roger
A. Horn and Charles R. Johnson. Matrix analysis, Cambridge, MA,
Cambridge University Press (1985).

222/1



Nonnegative Matrices, M-Matrices

A matrix is said to be reducible if there is a permutation matrix P such that
PAPT is block upper triangular. Otherwise, it is irreducible. An imporiant re-
sult concerning nonnegative matrices is the following theorem known as the Perron-
Frobenius theorem.

Theorem 1.25 Ler A be a real n x n nonnegative irreducible matrix. Then A =
plA), the spectral radius of A, is a simple eigenvalue of A. Moreover, there exists an
eigenvector u with positive elements associated with this eigenvalue.

A relaxed version of this theorem allows the matrix to be reducible but the conclusion
is somewhat weakened in the sense that the elements of the eigenvectors are only
guaranteed to be nonnegative.

Next, a useful property is established.
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Nonnegative Matrices, M-Matrices

Proposition 1.26 Ler A, B, C' be nonnegative marrices, with A < B. Then

AC < BC and CA<(CB.

Proof. Consider the first inequality only, since the proof for the second is identical.
The result that is claimed translates into

T n

Z‘Ifﬁf"’k.f < Zbﬂ:c:;ﬁj, 1< i<n,

k=1 k=1
which is clearly true by the assumptions. O

A consequence of the proposition is the following corollary.
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Nonnegative Matrices, M-Matrices

Corollary 1.27 Let A and B be two nonnegative matrices, with A < B. Then

AF < BF vk >0 (1.42)

Proof. The proof is by induction. The inequality is clearly true for & = 0. Assume
that (1.42) is true for k. According to the previous proposition, multiplying (1.42)
from the left by A results in

AM < AB*. (1.43)

Now, it is clear that if B > 0, then also B* > 0, by Proposition 1.24, We now
multiply both sides of the inequality A < B by B* to the right, and obtain

ABF < ghtl, (1.44)

The inequalities (1.43) and (1.44) show that A¥*1 < B¥1 which completes the
induction proof. O
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Nonnegative Matrices, M-Matrices

Proof. The proof is by induction. The inequality is clearly true for & = 0. Assume
that (1.42) is true for k. According to the previous proposition, multiplying (1.42)
from the left by A results in

AM < AB*. (1.43)

Now, it is clear that if B > 0, then also B* > 0, by Proposition 1.24, We now
multiply both sides of the inequality A < B by B* to the right, and obtain

ABF < ghtl, (1.44)

The inequalities (1.43) and (1.44) show that A¥*1 < B¥1 which completes the
induction proof. O
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Nonnegative Matrices, M-Matrices

A theorem which has important consequences on the analysis of
iterative methods (e.g. stationary methods linked to boundary value
problem, as such the Poisson problem) as well as in the mathematical
sciences and applications (e.g., Economics) will now be stated in
what follows (see, e.g., also the references below and cited therein):

» Mohamed Abd El Aziz, Wael Khidr, Nonnegative matrix
factorization based on projected hybrid conjugate gradient
algorithm, Signal, Image and Video Processing 9(8) (2015)
1825-1831.

» Abraham Berman and Robert J. Plemmons, Nonnegative
Matrices in the Mathematical Sciences (Classics in Applied
Mathematics), SIAM, 1994.
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Proof. The proof is by induction. The inequality is clearly true for & = 0. Assume
that (1.42) is true for k. According to the previous proposition, multiplying (1.42)
from the left by A results in

AM < AB*. (1.43)

Now, it is clear that if B > 0, then also B* > 0, by Proposition 1.24, We now
multiply both sides of the inequality A < B by B* to the right, and obtain

ABF < ghtl, (1.44)

The inequalities (1.43) and (1.44) show that A¥*1 < B¥1 which completes the
induction proof. O
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Nonnegative Matrices, M-Matrices

Theorem 1.28 Let A and B be two square matrices that satisfy the inequalities
0O<A<B. (1.45)

Then
p(A) < p(B). (1.46)

Proof. The proof is based on the following equality stated in Theorem 1.12
p(X) = lim || Xx*(V/*
k—oo

for any matrix norm. Choosing the 1—norm, for example, we have from the last
property in Proposition 1.24

p(A) = Tim ||A¥|V* < tim | B*|V* = p(B)
00 k—oo

which completes the proof. O
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Nonnegative Matrices, M-Matrices

Theorem 1.29 Let B be a nonnegative matrix. Then p(B) < 1 if and only if I — B
is nonsingular and (I — B)~" is nonnegative.

Proof. Define C' = I — B. If it is assumed that p(B) < 1, then by Theorem 1.11,
C' = [ — B is nonsingular and

C—l:(;_B)—l:ZB{ (147)
i=0
In addition, since B = 0, all the powers of I3 as well as their sum in (1.47) are also
nonnegative.
To prove the sufficient condition, assume that C' is nonsingular and that its in-

verse is nonnegative. By the Perron-Frobenius theorem, there is a nonnegative eigen-
vector u associated with p(B), which is an eigenvalue, i.e.,

1
Bu = p(B)u or, equivalently. Clu=—— .
1 —p(B)
Since « and C'~! are nonnegative, and I — B is nonsingular, this shows that 1 —
p(B) > 0, which is the desired result. a
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Nonnegative Matrices, M-Matrices (M-Matrices)

Definition 1.30 A matrix is said to be an M-matrix if it satisfies the following four

properties:
Loai>0fori=1,..., 1.
2 ai;<0foriség i,j=1,..., .

3. A is nonsingular.

4 A1=o0
In reality, the four conditions in the above definition are somewhat redundant and
equivalent conditions that are more rigorous will be given later. Let A be any matrix
which satisfies properties (1) and (2) in the above definition and let D be the diagonal
of A. Since D > 0,

A=D-—(D-A)=D(I-(I-D"4)).
Now define
B=I-D'A

Using the previous theorem, I — B = D~'A is nonsingular and (I — B)~! =
A7'D > 0if and only if p(B) < 1. It is now easy to see that conditions (3) and (4)
of Definition 1.30 can be replaced by the condition p(B) < 1.

231/1



Nonnegative Matrices, M-Matrices (M-Matrices)

Theorem 1.31 Let a matrix A be given such that
I oagi=0feri=1,...,m
2. a;;<0foris#j,i,j=1,...,n

Then A is an M -matrix if and only if

3. p(B) < 1, where B=1— D7 1A

Proof. From the above argument, an immediate application of Theorem 1.29 shows
that properties (3) and (4) of the above definition are equivalent to p(B) < 1, where
B =1—-Cand C = D7'A. In addition, C' is nonsingular iff A is and C~' is
nonnegative iff A is. a

The next theorem shows that the condition (1) in Definition 1.30 is implied by
the other three.

232/1



Nonnegative Matrices, M-Matrices (M-Matrices)
Theorem 1.32 Ler a matrix A be given such that
Firagy < 0fordist Jotyg'=ivanm
2. Ais nonsingular.
3, A7 340,
Then
4. a;; > 0fori=1,...,n, ie, Aisan M-matrix.

5. p(B) < 1where B=1- DA

5 p(B) < 1where B=1—D71A
Proof. Define C' = A~'. Writing that (AC);; = 1 yields

n n
E AipCri = 1 which gives ajici =1 — E ik Clhi-
k=1 k=1

ki

Since a;icp; < 0 for all k, the right-hand side is = 1 and since ¢;; = 0, then ag; > 0.
The second part of the result now follows immediately from an application of the
previous theorem. O

Finally, this useful result follows.
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Nonnegative Matrices, M-Matrices (M-Matrices)

Theorem 1.33 Let A, B be two matrices which satisfy
I. A< B.
2. by < 0foralli # j.

Then if A is an M-matrix, so is the matrix B.
Proof. Assume that A is an M-matrix and let Dy denote the diagonal of a matrix
X. The matrix D is positive because

Dy =Dy = 0.
Consider now the matrix I — D" B. Since A < B, then
Di—A>Dg—B>0
which, upon multiplying through by D;l. yields
1-D'A>D, (Dg—B)> D, (Dp—B)=1-Dy'B > 0.

Since the matrices [ — DB' Band I — D} ' 4 are nonnegative, Theorems 1.28 and

1.31 imply that
p(I —D,'B) < p(I-D;'A) < 1.

This establishes the result by using Theorem 1.31 once again. O 5341



Positive-Definite Matrices

A real matrix is said to be positive definite or positive real if
(Au,u) >0, Yue R", us#0. (1.48)

It must be emphasized that this definition is only useful when formulated entirely for
real variables. Indeed, if u were not restricted to be real, then assuming that (Auw, u)
is real for all v complex would imply that A is Hermitian. If, in
addition to the definition stated by 1.48, A is symmetric (real), then A is said to be
Symmetric Positive Definite (SPD). Similarly, if A is Hermitian, then A is said to be
Hermitian Positive Definire (HPD). Some properties of HPD matrices were seen in

the above, in particular with regards to their eigenvalues. Now the more general
case where A is non-Hermitian and positive definite is considered.
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Positive-Definite Matrices

We begin with the observation that any square matrix (real or complex) can be
decomposed as

in which A=H+i8, (1.49)
H = S(A+4") (1.50)
g = ;(A—A”}. (1.51)

2i

Note that both H and S are Hermitian while the matrix i in the decomposition
(1.49) is skew-Hermitian. The matrix H in the decomposition is called the Hermi-
tian part of A, while the matrix iS is the skew-Hermitian part of A. The above
decomposition is the analogue of the decomposition of a complex number = into
z=r-+ n‘y. 1 1
r=Re(z) = 5{2 +2), y=S9m(z) = Z(Z — Z)

When A is real and wu is a real vector then (Aw, u) is real and, as a result, the
decomposition (1.49) immediately gives the equality

(Au,u) = (Hu,u). (1.52)

This results in the following theorem.
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Positive-Definite Matrices

Theorem 1.34 Let A be a real positive definite matrix. Then A is nonsingular. In
addition, there exists a scalar oo > () such that

(Au, 1) > af|ul?, (1.53)

for any real vector u.

Proof. The first statement is an immediate consequence of the definition of positive
definiteness. Indeed, if A were singular, then there would be a nonzero vector such
that Au = 0 and as a result (Au,u) = 0 for this vector, which would contradict
(1.48). We now prove the second part of the theorem. From (1.52) and the fact that
A is positive definite, we conclude that H is HPD. Hence, from (1.40) based on the
min-max theorem, we get

(Aw, u) . (Hu,u) :
i = > Amin(H) > 0.
]ufl,ilul (e, 1) u;ig (w,u) — min(H)
Taking o = A, (H ) yields the desired inequality (1.53). O
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Positive-Definite Matrices

A simple yet important result which locates the eigenvalues of A in terms of the
spectra of H and S can now be proved.

Theorem 1.35 Let A be any square (possibly complex) matrix and let H = é(A +
AMyand S = % (A — AH). Then any eigenvalue \; of A is such that

AI?M}J.{H} E SRE(/\J) S AJ?r-r’l.]’:(}:‘(} (1’54)
Arn'in(s} < I&ﬂl(hl}') < /\mﬂJ'(S)- (1 55)
Proof. When the decomposition (1.49) is applied to the Rayleigh quotient of the
eigenvector u; associated with A;, we obtain
A= (Auj, uj) = (Huj, uj) +i(Suj, uj), (1.56)
assuming that ||u;||; = 1. This leads to
Re(X;) = (Huj,uj)
JImlA;) = (Suy,uy).

The result follows using properties established in Section 1.9, O
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Positive-Definite Matrices

Thus, the eigenvalues of a matrix are contained in a rectangle defined by the
eigenvalues of its Hermitian part and its non-Hermitian part. In the particular case
where A is real, then i5 is skew-Hermitian and its eigenvalues form a set that is
symmetric with respect to the real axis in the complex plane. Indeed. in this case, iS5
is real and its eigenvalues come in conjugate pairs.

Note that all the arguments herein are based on the field of values and, therefore,
they provide ways to localize the eigenvalues of A from knowledge of the field of
values. However, this approximation can be inaccurate in some cases.

Example 1.3. Consider the matrix

1 1
= 1)

The eigenvalues of A are —99 and 101. Those of /7 are 1 + (10* 4 1)/2 and those
of i are 4i(10 — 1)/2. O
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Positive-Definite Matrices

When a matrix B is Symmetric Positive Definite, the mapping
zy — (x,y)p=(Bx,y) (1.57)
from C" xC" to C is a proper inner product on C”, in the sense defined in Section 1.4,
The associated norm is often referred to as the energy norm or A-norm. Sometimes.
it is possible to find an appropriate HPD matrix 5 which makes a given matrix A
Hermitian, i.e., such that
(Az,y)p = (@, Ay)p, Y,y

although A is a non-Hermitian matrix with respect to the Euclidean inner product.
The simplest examples are A = B~'C and A = C'B, where ' is Hermitian and B
is Hermitian Positive Definite.
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Projection Operators

Projection operators or projectors play an important role in
numerical linear algebra, particularly in iterative methods for
solving various matrix problems. See the following the
references (also used in this course) for more details:
James W. Demmel. Applied numerical linear algebra,
Philadelphia, PA, SIAM (1997).

Lloyd N. Trefethen, David Bau Ill. Numerical linear algebra,
Philadelphia, PA, SIAM (1997).

However, in what follows, we will introduce these operators
from a purely algebraic point of view and gives a few of their
important properties.
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Range and Null Space of a Projector

A projector P is any linear mapping from C" to itself which is idempotent, i.e., such
that

PE= P
A few simple properties follow from this definition. First, if P is a projector, then so
is (I — P?), and the following relation holds,

Null(P) = Ran(I — P). (1.58)
In addition, the two subspaces Null(P) and Ran(P) intersect only at the element
zero. Indeed, if a vector & belongs to Ran(P), then Pr = x, by the idempotence
property. If it is also in Null( P), then Pz = 0. Hence, & = Px = 0 which proves
the result. Moreover, every element of C" can be written as @ = Pax + ([ — P)a.
Therefore, the space C" can be decomposed as the direct sum

C" = Null(P) & Ran(P).
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Range and Null Space of a Projector

Conversely, every pair of subspaces M and S which forms a direct sum of C" defines
a unique projector such that Ran(P) = M and Null(P) = S. This associated
projector /7 maps an element @ of C" into the component x;, where x is the M-
component in the unique decomposition i = x + x5 associated with the direct sum.

In fact, this association is unique, that is, an arbitrary projector f? can be entirely
determined by two subspaces: (1) The range M of P, and (2) its null space S which
is also the range of [ — P. For any x, the vector Pxr satisfies the conditions,

Pr e M

x—Px € §.
The linear mapping P is said to project = onto M and along or parallel to the sub-
space S. If 17 is of rank m, then the range of I — P is of dimension n — m. Therefore,

it is natural to define S through its orthogonal complement . = S which has di-
mension m. The above conditions that define u = Px for any = become

uw e M (1.59)
z—ul L. (1.60)
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Range and Null Space of a Projector

These equations define a projector P onto M and orthogonal to the subspace L.
The first statement, (1.59), establishes the m degrees of freedom, while the second,
(1.60), gives the m constraints that define Px from these degrees of freedom. The
general definition of projectors is illustrated in Figure 1.1.

Pr ¢ M i 7
a—Px L L el

Figure 1.1 Projection of x onto M and orthogonal to L.

The question now is: Given two arbitrary subspaces, M and L both of dimension
m, is it always possible to define a projector onto M orthogonal to L through the
conditions (1.39) and (1.60)7 The following lemma answers this question.
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Range and Null Space of a Projector

Lemma 1.36 Given two subspaces M and L of the same dimension m, the following

two conditions are mathematically equivalent,
. No nonzero vector of M is orthogonal to L;
it. Forany x in C" there is a unique vector u which satisfies the conditions

Preof. The first condition states that any vector which is in M and also orthogonal
to L must be the zero vector. It is equivalent to the condition

MnLt={o}.
Since L is of dimension m, L+ is of dimension n — m and the above condition is
equivalent to the condition that

C*=MaoL. (1.61)
This in turn is equivalent to the statement that for any x, there exists a unique pair of
vectors i, w such that

Tr=u-+u,

where u belongs to M, and w = & — u belongs to L™, a statement which is identical
with §i. O
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Range and Null Space of a Projector

In summary. given two subspaces M and L, satisfying the condition M 1 L+ = {0},
there is a projector P onto M orthogonal to L, which defines the projected vector u
of any vector x from equations (1.59) and (1.60). This projector is such that

Ran(P) = M, Null(P) = L.

In particular, the condition Pz = 0 translates into 2 € Null( P) which means that
x & L*. The converse is also true. Hence, the following useful property,

Pz=0 iff r L L. (1.62)
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Matrix Representations

Two bases are required to obtain a matrix representation of a general projector: a
basis V' = [t1,.... 1] for the subspace M = Ran(P) and a second one W =
[wl, — u.-‘m] for the subspace L. These two bases are biorthogonal when

(vi, wy) = &y (1.63)
In matrix form this means W7V = I. Since Px belongs to M, let Vy be its
representation in the V' basis. The constraint & — Px L L is equivalent to the

ssandztion; ((z—=Vy)w;j)=0 forj=1,...,m.
In matrix form, this can be rewritten as
WH(z —Vy) = 0. (1.64)

If the two bases are biorthogonal, then it follows that y = W . Therefore, in this
case, Pr = VW2, which yields the matrix representation of I,

If the two bases are biorthogonal, then it follows that y = Wz, Therefore, in this
case, P = VIWHz, which yields the matrix representation of P,

P=vWwH", (1.65)
In case the bases V' and W are not biorthogonal, then it is easily seen from the
condition (1.64) that
P=v(wHyy-lwh, (1.66)
If we assume that no vector of M is orthogonal to L, then it can be shown that the
m % m matrix WV is nonsingular.
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Orthogonal and Oblique Projectors

An important class of projectors is obtained in the case when the subspace L is equal
to M, i.e., when
Null(P) = Ran(P)*.

Then, the projector P is said to be the orthogonal projector onto M. A projector that
is not orthogonal is obligue. Thus, an orthogonal projector is defined through the
following requirements satisfied for any vector x,

PreM and (I-P)alM (1.67)

or equivalently,
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Orthogonal and Oblique Projectors

Pre M and (({—Pla,y)=0 Yye M

s &
Pr e M
x—Pr LM
//’ M
1
-
= P

Figure 1.2 Orthogonal projection of x onto a subspace M.
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Orthogonal and Oblique Projectors

It is interesting to consider the mapping P! defined as the adjoint of P
(Po,y) = (z,Py), Yz Vy. (1.68)
First note that ' is also a projector because for all 7 and y,
((PEYix,4) = (P%z, Py) = (z, PPy) = (z: Py) = (PP z,y).
A consequence of the relation (1.68) is

Null(PT) = Ran(P)* (1.69)
Null(P) = Ran(PH)+. (1.70)

The above relations lead to the following proposition.
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Orthogonal and Oblique Projectors

Proposition 1.37 A projector is orthogonal if and only if it is Hermitian.

Proof. By definition, an orthogonal projector is one for which Null( P) = Ran(P)*.
Therefore, by (1.69), if P is Hermitian, then it is orthogonal. Conversely, if P is or-
thogonal, then (1.69) implies Null(P) = Null( P*) while (1.70) implies Ran(P) =
Ran(P). Since P! is a projector and since projectors are uniquely determined by
their range and null spaces, this implies that P = P, O

Given any unitary n > 1 matrix V' whose columns form an orthonormal basis of
M = Ran(P). we can represent P by the matrix P = V'V, This is a particular case
of the matrix representation of projectors (1.65). In addition to being idempotent, the
linear mapping associated with this matrix satisfies the characterization given above,
ie.
Vvvie e M and (I-VVHe e M-

It is important to note that this representation of the orthogonal projector P is not
unique. In fact, any orthonormal basis V' will give a different representation of P in
the above form. As a consequence for any two orthogonal bases Vi, V5 of M, we
must have Vi V! = 13V}, an equality which can also be verified independently.
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Properties of Orthogonal Projectors

When P is an orthogonal projector, then the two vectors Px and (I — P)ux in the
decomposition = Px + (I — P)x are orthogonal. The following relation results:

/13 = [1P=l3 + | (X — P)a|i3.
A consequence of this is that for any x.
[Pzl < [lz]2.

Thus, the maximum of || Px||2/||||2. forall & in C™ does not exceed one. In addition
the value one is reached for any element in Ran( 7). Therefore,

1Pll2 =1

for any orthogonal projector P.

An orthogonal projector has only two eigenvalues: zero or one. Any vector of
the range of P is an eigenvector associated with the eigenvalue one. Any vector of
the null-space is obviously an eigenvector associated with the eigenvalue zero.

Next, an important optimality property of orthogonal projectors is established.
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Properties of Orthogonal Projectors

Theorem 1.38 Let P be the orthogonal projector onto a subspace M. Then for any
given vector v in C" the following is true:
min ||x — y|lz = ||z — Pzlfa. (1.71)
yeM

Proof. Let y be any vector of M and consider the square of its distance from x. Since
a — Pux is orthogonal to M to which Px — y belongs, then
e = 9l13 = lle = P+ (Pa = )3 = lle = Pl + [|(Pe — ).

Therefore, || — y|lz = || — Px||s for all y in M. This establishes the result by
noticing that the minimum is reached for y = Pu. O

By expressing the conditions that define y* = P for an orthogonal projector P
onto a subspace M, it is possible to reformulate the above result in the form of nec-
essary and sufficient conditions which enable us to determine the best approximation
to a given vector & in the least-squares sense.
Corollary 1.39 Let a subspace M, and a vector x in C" be given. Then

min |z —y|2 = [lz — "2, 1.72
peM ” J”Z ” u ”2 ( )
if and only if the following two conditions are satisfied,

y" s M
x—y* L M.
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Existence (and uniqueness) of a solution

From the numerical viewpoint is far more complex!

Linear systems are among the most important and common problems encountered in
scientific computing. From the theoretical point of view, it is well understood when
a solution exists, when it does not, and when there are infinitely many solutions. In
addition, explicit expressions of the solution using determinants exist. However, the
numerical viewpoint is far more complex. Approximations may be available but it
may be difficult to estimate how accurate they are. This clearly will depend on the
data at hand. i.e., primarily on the coefficient matrix. This section gives a very brief
overview of the existence theory as well as the sensitivity of the solutions.
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Existence (and uniqueness) of a solution

From the numerical viewpoint is far more complex!
Consider the linear system
Az =b. (1.73)

Here, x is termed the unknown and b the right-hand side. When solving the linear
system (1.73), we distinguish three situations.

Case 1 The matrix A is nonsingular. There is a unique solution given by # = A~ 1h.

Case 2 The matrix A is singular and b € Ran(A). Since b € Ran(A), there is an
g such that Azg = b. Then zp + v is also a solution for any » in Null(A). Since
Null( A) is at least one-dimensional, there are infinitely many solutions,

Case 3 The matrix A is singular and b ¢ Ran(A). There are no solutions.

Gilbert Strang. Linear algebra and its applications, 3rd ed.,
Brooks/Cole, Thomson Learning,(1988). Kenneth Hoffman and Ray

Kunze. Linear algebra, 2nd ed, Englewood Cliffs, NJ, Prentice-Hall
(1971).
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